934 resultados para BLOCK-COPOLYMER MELTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have followed the morphological evolution and crystallization process of spherical micelles formed by the mixture of polystyrene-b-poly(acrylic acid) (PS-b-PAA) and polystyrene-b-poly(2-vinylpyridine)b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) (the core of the spherical micelles was made of P2VP and PAA blocks through hydrogen bonding in neutral solvent N,N-dimethylformamide, DMF) via DMF vapor treatment. Different phenomena, such as rupture of the film, formation of cylinder aggregates and regular square lamellae, were observed when the micelle film was treated in DMF for different times. At the early stage of annealing in DMF vapor, the micelle film became unstable and ruptured. Cylinder aggregates, within which the PEO blocks achieved the association and primary chain folding, formed as the mesophases before the nucleation of the PEO single crystals at this stage. Further treatment in DMF vapor resulted in the nucleation of the PEO blocks at the corners of quasi-square lamellae. Then a quite regular "sandwich" lamellar structure, constructed by a PEO single-crystal layer covered by two tethered layers of other amorphous blocks on the top and bottom crystal basal surfaces, formed when the film of micelles was annealed in DMF vapor for sufficient times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior of poly (L-lactide)-poly(ethylene glycol) ( PLLA-PEG) diblock copolymer was studied by means of real-time WAXD, DSC and POM, and Ozawa equation was used to analyze the kinetics of PLLA-PEG under nonisothermal crystallization conditions. During the crystallization of the high-T-m block (PLLA), the low-T-m block (PEG) acts as a noncrystalline diluent, and the crystallization behavior of PLLA obeys the Ozawa theory. When the PEG block begins to crystallize, the PLLA phase is always partially solidified and the presence of the spherulitic microstructure of PLLA profoundly restricts its crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. Furthermore, the study of the crystalline morphology of PLLA-PEG at different cooling rates indicates that when the cooling rate is from low to high, the crystalline morphology undergoes a transformation from the ring-banded spherulites to the typical Maltese cross spherulites, which experiences the mixed crystalline morphologies of ring-banded and typical Maltese cross spherulites, and the spherulitic size becomes smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter, crystal growth of a symmetric crystalline-amorphous diblock copolymer, poly(styrene-b-epsilon-caprolactone) (PS-b-PCL), in thin films was investigated by atomic force microscopy (AFM), Relief structures of holes and islands were formed during annealing the film at the molten state, and the in situ observation of subsequent crystal growth at room temperature indicated that the crystals were preferred to occur at the edge of holes or islands and grew into the interior area. It was concluded that the stretched PCL blocks at the edge of relief structures, caused by material transportation or deformation of the interface, could act as nucleation agents during polymer crystallization. The crystal growth rate of individual lamellae varied both from lamellae to lamellae and in time, but the area occupied by crystals increased constantly with time. At 22 degreesC, the growth rate was 1.2 x 10(-2) mum(2)/min with the scan size 2 x 2 mum(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface morphology evolution of thin poly(styrene-block-ethylene/butylenes-block-styrene) (SEBS) triblock copolymer films as a function of the copolymer concentration was investigated by means of dynamic mode atomic force microscopy. At a relatively low copolymer concentration (0.025% w/v), the periodically orientated stripes were observed. This kind of surface patterning produced in the spin-coating process has not been reported in the literature before. It has been shown by our experiment that a shearing and stretching field can cause flexible polymer coils or aggregates to orientate during the spin coatings At a copolymer concentration of 0.05% w/v, SEBS molecule aggregates form network structures in the whole film. With further increase of the copolymer concentration, a continuous film with a microphase-separated structure was visualized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three triblock copolymers of poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weights and one diblock copolymer of poly[styrene-b-(ethylene-co-butylene)] (SEB) were used to compatibilize high density polyethylene/syndiotactic polystyrene (HDPE/sPS, 80/20) blend. Morphology observation showed that phase size of the dispersed sPS particles was significantly reduced on addition of all the four copolymers and the interfacial adhesion between the two phases was dramatically enhanced. Tensile strength of the blends increased at lower copolymer content but decreased with increasing copolymer content. The elongation at break of the blends improved and sharply increased with increments of the copolymers. Drop in modulus of the blend was observed on addition of the rubbery copolymers. The mechanical performance of the modified blends is strikingly dependent not only on the interfacial activity of the copolymers but also on the mechanical properties of the copolymers, particularly at the high copolymer concentration. Addition of compatibilizers to HDPE/sPS blend resulted in a significant reduction in crystallinity of both HDPE and sPS. Measurements of Vicat softening temperature of the HDPE/sPS blends show that heat resistance of HDPE is greatly improved upon incorporation of 20 wt% sPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) and poly(ethylene-co-methacrylic acid) (EMA) random copolymer were studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and excimer fluorescence. In binary blends, crystallization of EMA was studied, and no modification of crystal structure was detected. In excimer fluorescence measurements, emission intensities of blends of EMA and naphthalene-labeled LLDPE were measured. The ratio of the excimer emission intensity (I-D) to the emission intensity of the isolated "monomer" (I-M) decreases upon addition of EMA, indicating that PE segments of EMA interpenetrate into the amorphous phase of LLDPE. (C) 1998 Published by Elsevier Science Ltd,. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, IH-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly( ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. (C) 1998 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By mechanism-transformation (anionic --> cationic) polymerization, diblock copolymer of butadiene and 2-ethyl-2-oxazoline (PBd-b-PEOx) was synthesized in two steps. The first step is the polymerization of butadiene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were characterized by various methods, such as IR, (HNMR)-H-1, DMA, TEM and SAXS. The results show that the obtained copolymers possess high molecular weight and narrow molecular weighs distribution, and that the content of 1,4-structure was controllable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible blends of LLDPE with styrene-butadiene-styrene triblock copolymer (SBS) has been investigated by means of C-13 CPMAS n.m.r. and d.s.c. techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/SBS blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and SBS, through solubilization of chemically identical segments of LLDPE-g-PS into the amorphous region of LLDPE acid PS block domain of SBS, respectively. It was also found that LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, with serious effects on the supermolecular structure of LLDPE. The effect of LLDPE-g-PS on the supermolecular structure of LLDPE in the LLDPE/SBS blends obviously depends on the composition of the blends, but has little dependence on the PS grafting yields of LLDPE-g-PS. (C) 1998 Elsevier Science Ltd. All rights reserved.