806 resultados para Architectural spaces
Resumo:
The creation of the Humanization Program of Hospital Care and the increasing number of academic works and journal articles that discuss more humane practices in the health care services express the emphasis given to the theme in Brazil. In these discussions, however, it is not usual to find reference to architecture as a relevant factor in the humanization of hospitals, even though it is known that the physical structure of the building may help the recovering of the patients; elements such as gardens, the use of colors and open spaces may soften the impact caused by the hospital routine on patients. Considering the contribution the architectural project may bring to the humanization of hospitals, the aim of this study was to verify how the architects perceive the hospital humanization process. Besides having searched for subsides in informal interviews with health professionals, in visits to hospitals and in related seminars, the study was based on semi-structured interviews with architects of Natal, Rio Grande do Norte, who are specialists in this kind of projects. The content analysis of the interviews showed that physical space and attendance are essential to the humanization process. Those professionals see two humanization tendencies: while private hospitals have the structural physical appearance considered as humanized, public hospitals emphasize the humanization in attendance, fact that illustrates the contradictions in Brazilian health system. The interviewees consider the post-occupancy evaluation of the building as a learning exercise that contributes to new projects, but surprisingly they do not mention the patients opinion as part of it. Two annoying facts have emerged from the interviews, as also seen in preliminary stages of the study: rare are the works that focus on the person-environment relationship, and the definition of humanized hospital environments is still broad and inaccurate. This suggests the need of new studies in order to better understand how the two factors shown in this study attendance and physical space interact towards a true hospital humanization
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
Twenty-two stomachs from adult capybaras were used in this study, and an acid digestion mesoscopic technique was pursued using different concentrations of nitric acid to observe the muscular organization of the stomach. The capybara's stomach possessed a muscular coat composed of four layers or strata: external longitudinal, external oblique, circular and internal oblique. Also, the cardiac and pyloric sphincter muscles were comprised of three or two different layers, respectively. Furthermore, the internal oblique fibres were observed extending from the cardiac portion of the stomach to the smaller curvature, where they participated in the formation of the Ansa cardiaca together with the external. longitudinal fibres. This muscular architectural arrangement was compared to that in small rodents (rat, hamster, guinea pig), as well as in rabbits and pigs. In conclusion, the stomach of the capybara has a very particular, complex and defined muscular organization that differs from that in other rodents, or domestic animals, in particular, pigs. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We show that the Hardy space H¹ anal (R2+ x R2+) can be identified with the class of functions f such that f and all its double and partial Hubert transforms Hk f belong to L¹ (R2). A basic tool used in the proof is the bisubharmonicity of |F|q, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.