407 resultados para Apofisite tibial
Resumo:
To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.
Resumo:
To assess bone mineral density (BMD) at different skeletal sites in women with hypothalamic or ovarian amenorrhea and the effect of estrogen-gestagen substitution on BMD we compared BMD of 21 amenorrheic patients with hypothalamic or ovarian amenorrhea with that of a control population of 123 healthy women. All amenorrheic patients were recruited from the outpatient clinic of the Division of Gynecological Endocrinology at the University of Berne, a public University Hospital. One hundred and twenty-three healthy, regularly menstruating women recruited in the Berne area served as a control group. BMD was measured using dual-energy X-ray absorptiometry (DXA). At each site where it was measured, mean BMD was lower in the amenorrheic group than in the control group. Compared with the control group, average BMD in the amenorrheic group was 85% at lumbar spine (p < 0.0001), 92% at femoral neck (p < 0.02), 90% at Ward's triangle (p < 0.03), 92% at tibial diaphysis (p < 0.0001) and 92% at tibial epiphysis (p < 0.03). Fifteen amenorrheic women received estrogen-gestagen replacement therapy (0.03 mg ethinylestradiol and 0.15 mg desogestrel daily for 21 days per month), bone densitometry being repeated within 12-24 months. An annual increase in BMD of 0.2% to 2.9% was noted at all measured sites, the level of significance being reached at the lumbar spine (p < 0.0012) and Ward's triangle (p < 0.033). In conclusion BMD is lower in amenorrheic young women than in a population of normally menstruating, age-matched women in both mainly trabecular (lumbar spine, Ward's triangle, tibial epiphysis) and mainly cortical bone (femoral neck, tibial diaphysis).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The aim of this study was to explore the effect of long-term cross-sex hormonal treatment on cortical and trabecular bone mineral density and main biochemical parameters of bone metabolism in transsexuals. Twenty-four male-to-female (M-F) transsexuals and 15 female-to-male (F-M) transsexuals treated with either an antiandrogen in combination with an estrogen or parenteral testosterone were included in this cross-sectional study. BMD was measured by DXA at distal tibial diaphysis (TDIA) and epiphysis (TEPI), lumbar spine (LS), total hip (HIP) and subregions, and whole body (WB) and Z-scores determined for both the genetic and the phenotypic gender. Biochemical parameters of bone turnover, insulin-like growth factor-1 (IGF-1) and sex hormone levels were measured in all patients. M-F transsexuals were significantly older, taller and heavier than F-M transsexuals. They were treated by cross-sex hormones during a median of 12.5 years before inclusion. As compared with female age-matched controls, they showed a significantly higher median Z-score at TDIA and WB (1.7+/-1.0 and 1.8+/-1.1, P < 0.01) only. Based on the WHO definition, five (who did not comply with cross-sex hormone therapy) had osteoporosis. F-M transsexuals were treated by cross-sex hormones during a median of 7.6 years. They had significantly higher median Z-scores at TEPI, TDIA and WB compared with female age-matched controls (+0.9+/-0.2 SD, +1.0+/-0.4 SD and +1.4+/-0.3 SD, respectively, P < 0.0001 for all) and reached normal male levels except at TEPI. They had significantly higher testosterone and IGF-1 levels (p < 0.001) than M-F transsexuals. We conclude that in M-F transsexuals, BMD is preserved over a median of 12.5 years under antiandrogen and estrogen combination therapy, while in F-M transsexuals BMD is preserved or, at sites rich in cortical bone, is increased to normal male levels under a median of 7.6 years of androgen treatment in this cross sectional study. IGF-1 could play a role in the mediation of the effect of androgens on bone in F-M transsexuals.
Resumo:
To study the effect of fluoride on bone mineral density (BMD) in patients treated chronically with glucocorticosteroids, 15 subjects (renal grafted, n = 12; skin disease, n = 1; broncho pulmonary disorder, n = 1; Crohn's disease, n = 1) were prospectively studied in a double-blinded manner and randomly allocated either to group 1 (n = 8) receiving 13.2 mg/day fluoride given as disodium monofluorophosphate (MFP) supplemented with calcium (1,000 mg/day) and 25-hydroxyvitamin D (calcifediol) (50 micrograms/day), or to group 2 (n = 7) receiving Cas+ calcifediol alone. An additional group of 14 renal transplant patients treated chronically with glucocorticosteroids but exempt of specific therapeutic intervention for bone disease was set up as historical controls. BMD was measured by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000) performed at months 0, 6 and 12 for groups 1 and 2 (lumbar spine, total upper femur, diaphysis and epiphysis of distal tibia), or 11-31 months apart with calculation of linear yearly changes for the historical cohort. Lumbar BMD tended to rise in groups 1 and 2, and to fall in group 3, the change reaching statistical significance (p < 0.05) in group 1, thus leading to a significant difference between groups 1 and 3 (p < 0.05). At upper femur, tibial diaphysis and tibial epiphysis, no significant change in BMD occurred in any of the groups. In conclusion, lumbar BMD rises more after a mild dosis of fluoride given as MFP and combined to calcium and calcifediol than on Ca+ calcifediol alone, without changes in BMD at the upper femur or distal tibia.
Resumo:
Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
To assess bone mineral density (BMD) in idiopathic calcium nephrolithiasis, dual-energy x-ray absorptiometry was performed at lumbar spine, upper femur (femoral neck, Ward's triangle, and total area), distal tibial diaphysis, and distal tibial epiphysis in 110 male idiopathic calcium stone formers (ICSF); 49 with and 61 without hypercalciuria on free-choice diet). Results were compared with those obtained in 234 healthy male controls, using (1) noncorrected BMD, (2) BMD corrected for age, height, and BMI, and (3) a skeletal score based on a tercile distribution of BMD values at following four sites: lumbar spine, Ward's triangle, tibial diaphysis, and tibial epiphysis. After correction, BMD--and therefore also skeletal score--tended to be lower in the stone formers than in controls at five of the six measurement sites, that is, lumbar spine, upper femur, Ward's triangle, tibial diaphysis, and tibial epiphysis, limit of significance being reached for the last two sites without difference between hypercalciuric (HCSF) and normocalciuric stone formers (NCSF). Estimated current daily calcium intake was significantly lower in patients (616 +/- 499 mg/24 h, mean +/- SEM) than in controls (773 +/- 532, p = 0.02). Of 17 patients who in the past had received a low-calcium diet for at least 1 year, 10 had a low skeletal score (4-6) whereas only 1 had a high score (10-12; p = 0.037). Of the 12 stone formers in the study with skeletal score 4 (i.e., the lowest), 8 had experienced in the past one or more fractures of any kind versus only 19 of the remaining 77 patients with skeletal score 5-12 (p = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVE: To evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses. STUDY DESIGN: Prospective, blinded, randomized cross-over study. ANIMALS: Ten healthy adult horses weighing 527-645 kg and aged 11-21 years old. METHODS: Electrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg(-1), romifidine 0.08 mg kg(-1), or xylazine, 1 mg kg(-1), was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation. RESULTS: The administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.
Resumo:
In contrast to the treatment of avulsion lesions of the anterior cruciate ligament (ACL) the management of intrasubstance ACL tears in the skeletally immature patient remains controversial. Prospective studies could show that conservative treatment results in severe instability with concomitant intraarticular damage and poor function of the knee. Reconstruction of a torn ACL always carries the risk of damaging the open growth plates; with consecutively affecting the longitudinal or axial growth of the lower extremity either on the femoral or the tibial side. Thus, several surgical procedures are available to prevent adverse events mentioned above. The purpose of this study is to review the recent literature regarding the treatment algorithm for ACL injuries in skeletally immature patients. This review will (1) investigate the indications for ACL surgery in children; (2) determine if a surgical procedure is clinically superior in skeletally immature patients; and (3) correlate the adverse events with the surgical technique.
Resumo:
BACKGROUND Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. METHODS Randomly selected women between 20-40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. RESULTS Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m(2)). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. CONCLUSION This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes are suitable for better predictions of the fracture risk deserves further investigation.
Resumo:
BACKGROUND In postmenopausal women, yearly intravenous zoledronate (ZOL) compared to placebo (PLB) significantly increased bone mineral density (BMD) at lumbar spine (LS), femoral neck (FN), and total hip (TH) and decreased fracture risk. The effects of ZOL on BMD at the tibial epiphysis (T-EPI) and diaphysis (T-DIA) are unknown. METHODS A randomized controlled ancillary study of the HORIZON trial was conducted at the Department of Osteoporosis of the University Hospital of Berne, Switzerland. Women with ≥1 follow-up DXA measurement who had received ≥1 dose of either ZOL (n=55) or PLB (n=55) were included. BMD was measured at LS, FN, TH, T-EPI, and T-DIA at baseline, 6, 12, 24, and 36 months. Morphometric vertebral fractures were assessed. Incident clinical fractures were recorded as adverse events. RESULTS Baseline characteristics were comparable with those in HORIZON and between groups. After 36 months, BMD was significantly higher in women treated with ZOL vs. PLB at LS, FN, TH, and T-EPI (+7.6%, +3.7%, +5.6%, and +5.5%, respectively, p<0.01 for all) but not T-DIA (+1.1%). The number of patients with ≥1 incident non-vertebral or morphometric fracture did not differ between groups (9 ZOL/11 PLB). Mean changes in BMD did not differ between groups with and without incident fracture, except that women with an incident non-vertebral fracture had significantly higher bone loss at predominantly cortical T-DIA (p=0.005). CONCLUSION ZOL was significantly superior to PLB at T-EPI but not at T-DIA. Women with an incident non-vertebral fracture experienced bone loss at T-DIA.
Resumo:
We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^
Resumo:
Patients with critical limb ischemia (CLI) represent the most severe form of peripheral arterial disease (PAD) and exhibit high mortality rates. Frequently, PAD in CLI patients involves the infrapopliteal arterial segment challenging endovascular revascularization strategies. Restenosis remains the major drawback of tibial angioplasty encountered in more than two thirds of CLI patients undergoing tibial revascularization. In contrast to earlier observations, tibial patency was recently shown to be essential to attain an optimal clinical outcome in CLI patients subsequent to tibial angioplasty. The exact pathopyhsiological mechanisms of tibial restenosis remains unclear. To date, most of our knowledge on tibial restenosis and its pathophysiology is derived from coronary arteries, based on the similarity of coronary arteries to tibial artery morphology. Nervertheless, multiple antirestenosis concepts are investigated within clinical trials to reduce tibial restenosis.Purpose of the present manuscript is to provide a current update on the pathophysiology of tibial restenosis and potential antirestenosis strategies.
Resumo:
OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.
Resumo:
OBJECTIVE To validate use of stress MRI for evaluation of stifle joints of dogs with an intact or deficient cranial cruciate ligament (CrCL). SAMPLE 10 cadaveric stifle joints from 10 dogs. PROCEDURES A custom-made limb-holding device and a pulley system linked to a paw plate were used to apply axial compression across the stifle joint and induce cranial tibial translation with the joint in various degrees of flexion. By use of sagittal proton density-weighted MRI, CrCL-intact and deficient stifle joints were evaluated under conditions of loading stress simulating the tibial compression test or the cranial drawer test. Medial and lateral femorotibial subluxation following CrCL transection measured under a simulated tibial compression test and a cranial drawer test were compared. RESULTS By use of tibial compression test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 9.6 ± 3.7 mm and 10 ± 4.1 mm, respectively. By use of cranial drawer test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 8.3 ± 3.3 mm and 9.5 ± 3.5 mm, respectively. No significant difference in femorotibial subluxation was found between stress MRI techniques. Femorotibial subluxation elicited by use of the cranial drawer test was greater in the lateral than in the medial compartment. CONCLUSIONS AND CLINICAL RELEVANCE Both stress techniques induced stifle joint subluxation following CrCL transection that was measurable by use of MRI, suggesting that both methods may be further evaluated for clinical use.
Resumo:
INTRODUCTION Persistent traumatic peroneal nerve palsy, following nerve surgery failure, is usually treated by tendon transfer or more recently by tibial nerve transfer. However, when there is destruction of the tibial anterior muscle, an isolated nerve transfer is not possible. In this article, we present the key steps and surgical tips for the Ninkovic procedure including transposition of the neurotized lateral gastrocnemius muscle with the aim of restoring active voluntary dorsiflexion. SURGICAL TECHNIQUE The transposition of the lateral head of the gastrocnemius muscle to the tendons of the anterior tibial muscle group, with simultaneous transposition of the intact proximal end of the deep peroneal nerve to the tibial nerve of the gastrocnemius muscle by microsurgical neurorrhaphy is performed in one stage. It includes 10 key steps which are described in this article. Since 1994, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We review the indications and limitations of the technique. CONCLUSION Early clinical results after neurotized lateral gastrocnemius muscle transfer appear excellent; however, they still need to be compared with conventional tendon transfer procedures. Clinical studies are likely to be conducted in this area largely due to the frequency of persistant peroneal nerve palsy and the limitations of functional options in cases of longstanding peripheral nerve palsy, anterior tibial muscle atrophy or destruction.