977 resultados para Aneis (Algebra)
Resumo:
Svenska elever har presterat dåligt i internationella undersökningar en längre tid när det gäller algebraområdet i matematik. Elevernas begreppsförståelse har pekats ut som en faktor som spelar in i de dåliga resultaten för svenska elever del. Syftet med denna studie har därför varit att ta reda på den roll som begrepp och begreppsförmåga spelar vid inlärning av algebra samt vilken begreppsförståelse elever i årskurs 4-6 har. Genom en systematisk litteraturstudie har frågeställningarna besvarats. Resultaten visar att brister i begreppsförståelse i algebra också leder till brister i kunskap i algebra. Undervisning med fokus på begrepp leder till bättre förståelse för begrepp samtidigt som det även leder till procedurell kunskap. Elever i årskurs 4-6 kan hantera variabler och använda dem i matematiska uttryck. Fördelar med en tidig introduktion av variabelbegreppet är att elever bygger en bättre förståelse för begreppet.
Resumo:
This article describes the design and implementation of computer-aided tool called Relational Algebra Translator (RAT) in data base courses, for the teaching of relational algebra. There was a problem when introducing the relational algebra topic in the course EIF 211 Design and Implementation of Databases, which belongs to the career of Engineering in Information Systems of the National University of Costa Rica, because students attending this course were lacking profound mathematical knowledge, which led to a learning problem, being this an important subject to understand what the data bases search and request do RAT comes along to enhance the teaching-learning process.It introduces the architectural and design principles required for its implementation, such as: the language symbol table, the gramatical rules and the basic algorithms that RAT uses to translate from relational algebra to SQL language. This tool has been used for one periods and has demonstrated to be effective in the learning-teaching process. This urged investigators to publish it in the web site: www.slinfo.una.ac.cr in order for this tool to be used in other university courses.
Resumo:
There is a long history of debate around mathematics standards, reform efforts, and accountability. This research identified ways that national expectations and context drive local implementation of mathematics reform efforts and identified the external and internal factors that impact teachers’ acceptance or resistance to policy implementation at the local level. This research also adds to the body of knowledge about acceptance and resistance to policy implementation efforts. This case study involved the analysis of documents to provide a chronological perspective, assess the current state of the District’s mathematics reform, and determine the District’s readiness to implement the Common Core Curriculum. The school system in question has continued to struggle with meeting the needs of all students in Algebra 1. Therefore, the results of this case study will be useful to the District’s leaders as they include the compilation and analysis of a decade’s worth of data specific to Algebra 1.
Resumo:
Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.
Resumo:
Introdução: O queratocone é uma ectasia progressiva e não inflamatória da córnea, relativamente comum na prática clinica, e que se manifesta por uma diminuição progressiva da acuidade visual, associada a miopia e astigmatismo miópico irregular de difícil correcção. Os anéis corneanos intraestromais são uma opção terapêutica nos doentes com queratocone, visando melhorar a acuidade visual, a maior tolerância ao uso de lentes de contacto e protelar a necessidade de um transplante de córnea. Os autores apresentam os resultados da sua experiência, nos últimos 3 anos, com o implante de anéis intraestromais INTACS SK® em doentes com queratocone. Material e Métodos: Foram incluídos 21 olhos de 20 doentes submetidos a colocação de segmentos de anéis intraestromais –Intacs SK®-, por técnica manual assistida por vácuo. A técnica cirúrgica consistiu na criação de uma incisão radial no eixo mais curvo, com zona óptica de 7 mm, e criação de túneis por dissecção mecânica sob vácuo. Os critérios de inclusão foram: queratocone moderado a severo com Km<65D, sem compromisso da transparência central da córnea, baixa acuidade visual e/ou intolerância às lentes de contacto e paquimetria superior a 400 micras na área de inserção. Todos os doentes foram submetidos a exame oftalmológico completo e estudo topográfico corneano com Pentacam®. Foram registados os seguintes parâmetros no pré e pós-operatório (3 a 6 meses): melhor acuidade visual corrigida, equivalente esférico, esfera e cilindro, queratometria e paquimetria. Foram ainda registadas as complicações pós-operatórias. Utilizou-se o Teste Paired-samples t-test e o Teste de Wilcoxon para determinar se existia diferença estatisticamente significativa entre o pré e o pós-operatório em relação aos parâmetros analisados, adoptando-se um nível de significância de 5%. Resultados: Foram incluídos 21 olhos de 20 doentes, 9 mulheres e 11 homens. A idade média foi de 33,81 anos, variando entre os 12 e os 70 anos. Para todos os parâmetros analisados encontrou-se uma diferença estatisticamente significativa (p <0,05) entre o pré e o pós-operatório. Após 3 a 6 meses de colocação dos anéis, verificou-se melhoria de acuidade visual em 85,7% dos doentes, com valor médio de 0,5 pré-operatório para 0,3 unidades LogMar pós-operatório. O equivalente esférico médio diminuiu de -7,13 dioptrias pré-operatórias para -4,19 dioptrias pós-operatórias (redução de 2,94 dioptrias) e a queratometria média de 50,44 dioptrias para 48,01 dioptrias (redução de 2,43 dioptrias). Com um tempo máximo de seguimento de 3 anos, os depósitos estéreis no túnel estromal foram a complicação mais frequente no pós-operatório, não se verificando outras complicações como extrusão ou migração do anel, neovascularização ou infecção corneana. Conclusão: O implante de anéis intraestromais INTACS SK® permitiu melhorar a acuidade visual corrigida na grande maioria dos doentes, com redução do equivalente esférico e da queratometria e aumento da regularidade topográfica.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.
Resumo:
This paper describes an automated procedure for analysing the significance of each of the many terms in the equations of motion for a serial-link robot manipulator. Significance analysis provides insight into the rigid-body dynamic effects that are significant locally or globally in the manipulator's state space. Deleting those terms that do not contribute significantly to the total joint torque can greatly reduce the computational burden for online control, and a Monte-Carlo style simulation is used to investigate the errors thus introduced. The procedures described are a hybrid of symbolic and numeric techniques, and can be readily implemented using standard computer algebra packages.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.