838 resultados para Active learning methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engaging students in role play promotes active learning. Planned and structured role plays can be used to deliver components of the curriculum in clinical rotations of a medical programme. Role plays are most effective if learning objectives are defined, and the cases are challenging. All students should be involved and ground rules should be set. Allow adequate time for the role play, feedback and reflection. Let the students enjoy themselves. This paper provides 12 tips to create a meaningful learning experience for students using role play.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This field work study furthers understanding about expatriate management, in particular, the nature of cross-cultural management in Hong Kong involving Anglo-American expatriate and Chinese host national managers, the important features of adjustment for expatriates living and working there, and the type of training which will assist them to adjust and to work successfully in this Asian environment. Qualitative and quantitative data on each issue was gathered during in-depth interviews in Hong Kong, using structured interview schedules, with 39 expatriate and 31 host national managers drawn from a cross-section of functional areas and organizations. Despite the adoption of Western technology and the influence of Western business practices, micro-level management in Hong Kong retains a cultural specificity which is consistent with the norms and values of Chinese culture. There are differences in how expatriates and host nationals define their social roles, and Hong Kong's recent colonial history appears to influence cross-cultural interpersonal interactions. The inability of the spouse and/or family to adapt to Hong Kong is identified as a major reason for expatriate assignments to fail, though the causes have less to do with living away from family and friends, than with Hong Kong's highly urbanized environment and the heavy demands of work. Culture shock is not identified as a major problem, but in Hong Kong micro-level social factors require greater adjustment than macro-level societal factors. The adjustment of expatriate managers is facilitated by a strong orientation towards career development and hard work, possession of technical/professional expertise, and a willingness to engage in a process of continuous 'active learning' with respect to the host national society and culture. A four-part model of manager training suitable for Hong Kong is derived from the study data. It consists of a pre-departure briefing, post-arrival cross-cultural training, language training in basic Cantonese and in how to communicate more effectively in English with non-native speakers, and the assignment of a mentor to newly arrived expatriate managers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis covers two major aspects of pharmacy education; undergraduate education and pre-registration training. A cohort of pharmacy graduates were surveyed over a period of four years, on issues related to undergraduate education, pre-registration training and continuing education. These graduates were the first-ever to sit the pre-registration examination. In addition, the opinions of pre-registration tutors were obtained on pre-registration training, during the year that competence-based assessment was introduced. It was concluded that although the undergraduate course provided a broad base of knowledge suitable for graduates in all branches of pharmacy, several issues were identified which would require attention in future developments of the course. These were: 1. the strong support for the expansion of clinical, social and practice-based teaching. 2. the strong support to retain the scientific content to the same extent as in the three-year course. 3. a greater use of problem-based learning methods. The graduates supported the provision of a pre-registration continuing education course to help prepare for the examination and in areas inadequately covered in the undergraduate course. There was also support for the introduction of some form of split branch training. There was no strong evidence to suggest that the training had been an application of undergraduate education. In general, competence-based training was well regarded by tutors as an appropriate and effective method of skill assessment. However, community tutors felt it was difficult to carry out effectively due to day-to-day time constraints. The assistant tutors in hospital pharmacy were found to have a very important role in provision of training, and should be adequately trained and supported. The study recommends the introduction of uniform training and a quality assurance mechanism for all tutors and assistants undertaking this role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigates the process of selecting, extracting and reorganizing content from Semantic Web information sources, to produce an ontology meeting the specifications of a particular domain and/or task. The process is combined with traditional text-based ontology learning methods to achieve tolerance to knowledge incompleteness. The paper describes the approach and presents experiments in which an ontology was built for a diet evaluation task. Although the example presented concerns the specific case of building a nutritional ontology, the methods employed are domain independent and transferrable to other use cases. © 2011 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presented is webComputing – a general framework of mathematically oriented services including remote access to hardware and software resources for mathematical computations, and web interface to dynamic interactive computations and visualization in a diversity of contexts: mathematical research and engineering, computer-aided mathematical/technical education and distance learning. webComputing builds on the innovative webMathematica technology connecting technical computing system Mathematica to a web server and providing tools for building dynamic and interactive web-interface to Mathematica-based functionality. Discussed are the conception and some of the major components of webComputing service: Scientific Visualization, Domain- Specific Computations, Interactive Education, and Authoring of Interactive Pages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allergy is an overreaction by the immune system to a previously encountered, ordinarily harmless substance - typically proteins - resulting in skin rash, swelling of mucous membranes, sneezing or wheezing, or other abnormal conditions. The use of modified proteins is increasingly widespread: their presence in food, commercial products, such as washing powder, and medical therapeutics and diagnostics, makes predicting and identifying potential allergens a crucial societal issue. The prediction of allergens has been explored widely using bioinformatics, with many tools being developed in the last decade; many of these are freely available online. Here, we report a set of novel models for allergen prediction utilizing amino acid E-descriptors, auto- and cross-covariance transformation, and several machine learning methods for classification, including logistic regression (LR), decision tree (DT), naïve Bayes (NB), random forest (RF), multilayer perceptron (MLP) and k nearest neighbours (kNN). The best performing method was kNN with 85.3% accuracy at 5-fold cross-validation. The resulting model has been implemented in a revised version of the AllerTOP server (http://www.ddg-pharmfac.net/AllerTOP). © Springer-Verlag 2014.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Allergy is a form of hypersensitivity to normally innocuous substances, such as dust, pollen, foods or drugs. Allergens are small antigens that commonly provoke an IgE antibody response. There are two types of bioinformatics-based allergen prediction. The first approach follows FAO/WHO Codex alimentarius guidelines and searches for sequence similarity. The second approach is based on identifying conserved allergenicity-related linear motifs. Both approaches assume that allergenicity is a linearly coded property. In the present study, we applied ACC pre-processing to sets of known allergens, developing alignment-independent models for allergen recognition based on the main chemical properties of amino acid sequences.Results: A set of 684 food, 1,156 inhalant and 555 toxin allergens was collected from several databases. A set of non-allergens from the same species were selected to mirror the allergen set. The amino acids in the protein sequences were described by three z-descriptors (z1, z2 and z3) and by auto- and cross-covariance (ACC) transformation were converted into uniform vectors. Each protein was presented as a vector of 45 variables. Five machine learning methods for classification were applied in the study to derive models for allergen prediction. The methods were: discriminant analysis by partial least squares (DA-PLS), logistic regression (LR), decision tree (DT), naïve Bayes (NB) and k nearest neighbours (kNN). The best performing model was derived by kNN at k = 3. It was optimized, cross-validated and implemented in a server named AllerTOP, freely accessible at http://www.pharmfac.net/allertop. AllerTOP also predicts the most probable route of exposure. In comparison to other servers for allergen prediction, AllerTOP outperforms them with 94% sensitivity.Conclusions: AllerTOP is the first alignment-free server for in silico prediction of allergens based on the main physicochemical properties of proteins. Significantly, as well allergenicity AllerTOP is able to predict the route of allergen exposure: food, inhalant or toxin. © 2013 Dimitrov et al.; licensee BioMed Central Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces the theory of algorithm visualization and its education-related results obtained so far, then an algorithm visualization tool is going to be presented as an example, which we will finally evaluate. This article illustrates furthermore how algorithm visualization tools can be used by teachers and students during the teaching and learning process of programming, and equally evaluates teaching and learning methods. Two tools will be introduced: Jeliot and TRAKLA2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. ^ The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. ^ Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. ^ Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. ^ Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. ^ The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. ^ In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally assumed that civic education efforts will have a positive effect on the political attitudes and behaviors of adolescents and young adults. There is less agreement, however, on the most effective forms of civic education. In the present study, we distinguish between formal civic education, an open classroom climate and active learning strategies, and we explore their effect on political interest, efficacy, trust and participation. To analyze these effects, we rely on the results of a two-year panel study among late adolescents in Belgium. The results indicate that formal civic education (classroom instruction) and active learning strategies (school council membership and, to a lesser extent, group projects) are effective in shaping political attitudes and behavior. An open classroom climate, on the other hand, has an effect on political trust. We conclude that there is no reason to privilege specific forms of civic education, as each form contributes to different relevant political attitudes and behaviors.