879 resultados para Action Learning Cycle
Resumo:
In this action research study of my classroom of 10th grade Algebra II students, I investigated three related areas. First, I looked at how heterogeneous cooperative groups, where students in the group are responsible to present material, increase the number of students on task and the time on task when compared to individual practice. I noticed that their time on task might have been about the same, but they were communicating with each other mathematically. The second area I examined was the effect heterogeneous cooperative groups had on the teacher’s and the students’ verbal and nonverbal problem solving skills and understanding when compared to individual practice. At the end of the action research, students were questioning each other, and the instructor was answering questions only when the entire group had a question. The third area of data collection focused on what effect heterogeneous cooperative groups had on students’ listening skills when compared to individual practice. In the research I implemented individual quizzes and individual presentations. Both of these had a positive effect on listing in the groups. As a result of this research, I plan to continue implementing the round robin style of in- class practice with heterogeneous grouping and randomly selected individual presentations. For individual accountability I will continue the practice of individual quizzes one to two times a week.
Resumo:
In this action research study of my classroom of 5th grade mathematics, I investigated cooperative learning and how it is related to problem solving as well as written and oral communication. I discovered that cooperative learning has a positive impact on students’ abilities in problem solving and their overall impression of mathematics and group work. I also found that my students’ communication skills improved in oral explanations of their work. As a result of this research I plan to continue my implementation of cooperative learning in my classroom as a general method of teaching. I also plan to continue to use cooperative learning in working with my students to increase their achievement in problem solving and communication of mathematics.
Resumo:
In this action research study of 55 sophomore and junior students in my Algebra II/Trigonometry classrooms, I investigated a reading strategy of learning mathematics. Students were given background information about reading and explored the benefits of reading for themselves. Next, students were taught to read their textbook, analyzing one section of the textbook at a time. Throughout the research project, students were given reading guides to fill out during class with whole class discussion following the reading time. I discovered that students are able to read a mathematics textbook with understanding and students who are gone for activities can learn independently. Teacher observations, student surveys, and student interviews provide quantitative evidence of increased student understanding and achievement. As a result of this research, I plan to continue utilizing the reading guides and incorporating reading as a method of learning mathematics within my classrooms.
Resumo:
PIBID's subproject from the Letras course at a public university from the interior of Sao Paulo has, as a vision, the teaching of languages in a different way, where the culture is something to be known, not only mentioned, and, because of that, students feel close to the language learning process, for the language is not something to be learned just as grammar, it is, in fact, to be learned as something more complex than that, making the connection between student and language and its values. The students have, as an objective the knowledge and formation in teaching, by participation in public schools where they could put the theory learned during the Letras course in the university in practice with students that could benefit from learning new languages. The public school, mentioned in this research, offered the opportunity for the PIBID students to participate in a project that already existed in this school, where the students were supposed to produce a script based in a tale, and with the script, they were supposed to produce a short movie and a trailer. In 2014, in the first year of the participation of PIBID in the project, PIBID students were asked to choose a tale in the languages that are currently part of the subproject, for the students could use as a base to the production of the short movie. This project is called Luz, Câmera… Action! and the main objective of this research was to verify the participation of PIBID in the project. For such, it was used a semi-structured open questionnaire, which sought to investigate how students and supervisors from the school understood and analyzed PIBID's participation in the project
Resumo:
How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal developmental data from semifree-ranging tufted capuchin monkeys (Cebus apella) to evaluate predictions arising from Perception-action theory linking manipulative development and the onset of tool-using. Percussive actions bringing an object into contact with a surface appeared within the first year of life. Most infants readily struck nuts and other objects against stones or other surfaces from 6 months of age, but percussive actions alone were not sufficient to produce nut-cracking sequences. Placing the nut on the anvil surface and then releasing it, so that it could be struck with a stone, was the last element necessary for nut-cracking to appear in capuchins. Young chimpanzees may face a different challenge in learning to crack nuts: they readily place objects on surfaces and release them, but rarely vigorously strike objects against surfaces or other objects. Thus the challenges facing the two species in developing the same behavior (nut-cracking using a stone hammer and an anvil) may be quite different. Capuchins must inhibit a strong bias to hold nuts so that they can release them; chimpanzees must generate a percussive action rather than a gentle placing action. Generating the right actions may be as challenging as achieving the right sequence of actions in both species. Our analysis suggests a new direction for studies of social influence on young primates learning sequences of actions involving manipulation of objects in relation to surfaces.
Resumo:
Urban populations that live in the outskirts of major Latin American cities usually face conditions of vulnerability attached to complex environmental issues, such as the lack of sewerage, floods, pollution and soil and water contamination. This article reports an intervention research programme in Sao Paulo, Brazil that combines a moral education approach with sustainability awareness in vulnerable communities. The main conceptual foundations of the project, designed to empower the community and promote ethical and environmental awareness are: strengthening the ties between the school and the surrounding community in order to construct 'moral atmosphere'; adoption of Problem- and Project-based Learning and the Design Thinking approach to reach the proposed goals.
Resumo:
Walking on irregular surfaces and in the presence of unexpected events is a challenging problem for bipedal machines. Up to date, their ability to cope with gait disturbances is far less successful than humans': Neither trajectory controlled robots, nor dynamic walking machines (Limit CycleWalkers) are able to handle them satisfactorily. On the contrary, humans reject gait perturbations naturally and efficiently relying on their sensory organs that, if needed, elicit a recovery action. A similar approach may be envisioned for bipedal robots and exoskeletons: An algorithm continuously observes the state of the walker and, if an unexpected event happens, triggers an adequate reaction. This paper presents a monitoring algorithm that provides immediate detection of any type of perturbation based solely on a phase representation of the normal walking of the robot. The proposed method was evaluated in a Limit Cycle Walker prototype that suffered push and trip perturbations at different moments of the gait cycle, providing 100% successful detections for the current experimental apparatus and adequately tuned parameters, with no false positives when the robot is walking unperturbed.
Resumo:
It has consistently been shown that agents judge the intervals between their actions and outcomes as compressed in time, an effect named intentional binding. In the present work, we investigated whether this effect is result of prior bias volunteers have about the timing of the consequences of their actions, or if it is due to learning that occurs during the experimental session. Volunteers made temporal estimates of the interval between their action and target onset (Action conditions), or between two events (No-Action conditions). Our results show that temporal estimates become shorter throughout each experimental block in both conditions. Moreover, we found that observers judged intervals between action and outcomes as shorter even in very early trials of each block. To quantify the decrease of temporal judgments in experimental blocks, exponential functions were fitted to participants’ temporal judgments. The fitted parameters suggest that observers had different prior biases as to intervals between events in which action was involved. These findings suggest that prior bias might play a more important role in this effect than calibration-type learning processes.
Resumo:
This thesis is a collection of five independent but closely related studies. The overall purpose is to approach the analysis of learning outcomes from a perspective that combines three major elements, namely lifelonglifewide learning, human capital, and the benefits of learning. The approach is based on an interdisciplinary perspective of the human capital paradigm. It considers the multiple learning contexts that are responsible for the development of embodied potential – including formal, nonformal and informal learning – and the multiple outcomes – including knowledge, skills, economic, social and others– that result from learning. The studies also seek to examine the extent and relative influence of learning in different contexts on the formation of embodied potential and how in turn that affects economic and social well being. The first study combines the three major elements, lifelonglifewide learning, human capital, and the benefits of learning into one common conceptual framework. This study forms a common basis for the four empirical studies that follow. All four empirical studies use data from the International Adult Literacy Survey (IALS) to investigate the relationships among the major elements of the conceptual framework presented in the first study. Study I. A conceptual framework for the analysis of learning outcomes This study brings together some key concepts and theories that are relevant for the analysis of learning outcomes. Many of the concepts and theories have emerged from varied disciplines including economics, educational psychology, cognitive science and sociology, to name only a few. Accordingly, some of the research questions inherent in the framework relate to different disciplinary perspectives. The primary purpose is to create a common basis for formulating and testing hypotheses as well as to interpret the findings in the empirical studies that follow. In particular, the framework facilitates the process of theorizing and hypothesizing on the relationships and processes concerning lifelong learning as well as their antecedents and consequences. Study II. Determinants of literacy proficiency: A lifelong-lifewide learning perspective This study investigates lifelong and lifewide processes of skill formation. In particular, it seeks to estimate the substitutability and complementarity effects of learning in multiple settings over the lifespan on literacy skill formation. This is done by investigating the predictive capacity of major determinants of literacy proficiency that are associated with a variety of learning contexts including school, home, work, community and leisure. An identical structural model based on previous research is fitted to the IALS data for 18 countries. The results show that even after accounting for all factors, education remains the most important predictor of literacy proficiency. In all countries, however, the total effect of education is significantly mediated through further learning occurring at work, at home and in the community. Therefore, the job and other literacy related factors complement education in predicting literacy proficiency. This result points to a virtual cycle of lifelong learning, particularly to how educational attainment influences other learning behaviours throughout life. In addition, results show that home background as measured by parents’ education is also a strong predictor of literacy proficiency, but in many countries this occurs only if a favourable home background is complemented with some post-secondary education. Study III. The effect of literacy proficiency on earnings: An aggregated occupational approach using the Canadian IALS data This study uses data from the Canadian Adult Literacy Survey to estimate the earnings return to literacy skills. The approach adapts a labour segmented view of the labour market by aggregating occupations into seven types, enabling the estimation of the variable impact of literacy proficiency on earnings, both within and between different types of occupations. This is done using Hierarchical Linear Modeling (HLM). The method used to construct the aggregated occupational classification is based on analysis that considers the role of cognitive and other skills in relation to the nature of occupational tasks. Substantial premiums are found to be associated with some occupational types even after adjusting for within occupational differences in individual characteristics such as schooling, literacy proficiency, labour force experience and gender. Average years of schooling and average levels of literacy proficiency at the between level account for over two-thirds of the premiums. Within occupations, there are significant returns to schooling but they vary depending on the type of occupations. In contrast, the within occupational return of literacy proficiency is not necessarily significant. The latter depends on the type of occupation. Study IV: Determinants of economic and social outcomes from a lifewide learning perspective in Canada In this study the relationship between learning in different contexts, which span the lifewide learning dimension, and individual earnings on the one hand and community participation on the other are examined in separate but comparable models. Data from the Canadian Adult Literacy Survey are used to estimate structural models, which correspond closely to the common conceptual framework outlined in Study I. The findings suggest that the relationship between formal education and economic and social outcomes is complex with confounding effects. The results indicate that learning occurring in different contexts and for different reasons leads to different kinds of benefits. The latter finding suggests a potential trade-off between realizing economic and social benefits through learning that are taken for either job-related or personal-interest related reasons. Study V: The effects of learning on economic and social well being: A comparative analysis Using the same structural model as in Study IV, hypotheses are comparatively examined using the International Adult Literacy Survey data for Canada, Denmark, the Netherlands, Norway, the United Kingdom, and the United States. The main finding from Study IV is confirmed for an additional five countries, namely that the effect of initial schooling on well being is more complex than a direct one and it is significantly mediated by subsequent learning. Additionally, findings suggest that people who devote more time to learning for job-related reasons than learning for personal-interest related reasons experience higher levels of economic well being. Moreover, devoting too much time to learning for personal-interest related reasons has a negative effect on earnings except in Denmark. But the more time people devote to learning for personal-interest related reasons tends to contribute to higher levels of social well being. These results again suggest a trade-off in learning for different reasons and in different contexts.
Resumo:
Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.
Resumo:
Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.