963 resultados para API (Application Programming Interface)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of Metal Organic Chemical Vapor Deposition (MOCVD) grown group III-A nitride device stacks on Si (111) substrates is critically dependent on the quality of the first AlN buffer layer grown. A Si surface that is both oxide-free and smooth is a primary requirement for nucleating such layers. A single parameter, the AlN layer growth stress, is shown to be an early (within 50 nm), clear (<0.5 GPa versus > 1GPa), and fail-safe indicator of the pre-growth surface, and the AlN quality required for successful epitaxy. Grain coalescence model for stress generation is used to correlate growth stress, the AlN-Si interface, and crystal quality. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A robust suboptimal reentry guidance scheme is presented for a reusable launch vehicle using the recently developed, computationally efficient model predictive static programming. The formulation uses the nonlinear vehicle dynamics with a spherical and rotating Earth, hard constraints for desired terminal conditions, and an innovative cost function having several components with associated weighting factors that can account for path and control constraints in a soft constraint manner, thereby leading to smooth solutions of the guidance parameters. The proposed guidance essentially shapes the trajectory of the vehicle by computing the necessary angle of attack and bank angle that the vehicle should execute. The path constraints are the structural load constraint, thermal load constraint, bounds on the angle of attack, and bounds on the bank angle. In addition, the terminal constraints include the three-dimensional position and velocity vector components at the end of the reentry. Whereas the angle-of-attack command is generated directly, the bank angle command is generated by first generating the required heading angle history and then using it in a dynamic inversion loop considering the heading angle dynamics. Such a two-loop synthesis of bank angle leads to better management of the vehicle trajectory and avoids mathematical complexity as well. Moreover, all bank angle maneuvers have been confined to the middle of the trajectory and the vehicle ends the reentry segment with near-zero bank angle, which is quite desirable. It has also been demonstrated that the proposed guidance has sufficient robustness for state perturbations as well as parametric uncertainties in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-Cu composite solders have been proposed as an effective thermal interface material. Here, finite element analysis and theoretical treatment of their mechanical and thermal behavior is presented. It was determined that the stresses and the strains were concentrated in the narrow and wider In channels, respectively. Furthermore, it is suggested that an In-Cu composite with disk-shaped Cu inclusions may not only further improve the thermal conductivity but may also reduce the stiffness of In-Cu composites in shear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An organic-aqueous interfacial reaction at room temperature has been employed to synthesize large-area self-assembled films consisting of PbSe single crystallites. The use of the films for the low-cost fabrication of IR-photodetectors has been explored. (111)-oriented single crystallites of PbSe self-assemble to form robust large-area films. The near-infrared photoresponse of the film measured at room temperature showed large responsivity and gain owing to trap-associated mechanisms. Low-cost, mild reaction conditions and tunability of the nature of deposits make the present strategy useful for synthesizing large-area films of functional materials for possible opto-electronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test cases in two dimensions show that the nonlinear transformation based interface capturing method outperforms both the conventional method and an interface capturing method without nonlinear transformation in resolving intricate flow features such as sheet jetting in the shock-induced cavity collapse. The ability of the proposed method in accounting for the gravitational and surface tension forces besides compressibility is demonstrated through a model fully three-dimensional problem concerning droplet splash and formation of a crownlike feature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today's programming languages are supported by powerful third-party APIs. For a given application domain, it is common to have many competing APIs that provide similar functionality. Programmer productivity therefore depends heavily on the programmer's ability to discover suitable APIs both during an initial coding phase, as well as during software maintenance. The aim of this work is to support the discovery and migration of math APIs. Math APIs are at the heart of many application domains ranging from machine learning to scientific computations. Our approach, called MATHFINDER, combines executable specifications of mathematical computations with unit tests (operational specifications) of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code comprised of API methods to compute the expression by mining unit tests of the API methods. We present a sequential version of our unit test mining algorithm and also design a more scalable data-parallel version. We perform extensive evaluation of MATHFINDER (1) for API discovery, where math algorithms are to be implemented from scratch and (2) for API migration, where client programs utilizing a math API are to be migrated to another API. We evaluated the precision and recall of MATHFINDER on a diverse collection of math expressions, culled from algorithms used in a wide range of application areas such as control systems and structural dynamics. In a user study to evaluate the productivity gains obtained by using MATHFINDER for API discovery, the programmers who used MATHFINDER finished their programming tasks twice as fast as their counterparts who used the usual techniques like web and code search, IDE code completion, and manual inspection of library documentation. For the problem of API migration, as a case study, we used MATHFINDER to migrate Weka, a popular machine learning library. Overall, our evaluation shows that MATHFINDER is easy to use, provides highly precise results across several math APIs and application domains even with a small number of unit tests per method, and scales to large collections of unit tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the formation of dendritic hierarchical structures of alpha-Fe2O3 and nanostructures of Fe2O3 by the simple liquid-liquid interface method. The morphology of thin films determined by high-resolution scanning electron microscopy shows nanorods, nanosheets and dendritic Fe2O3. The identification of phases of iron oxide structures is carried out by using XRD and XPS studies. XRD and XPS measurements point out the highly crystalline dendritic alpha-Fe2O3 phase and the mixed phase of alpha- and gamma-Fe2O3 nanostructures. The magnetic measurement also suggests the presence of a mixed phase in the sample grown for 72 hours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique strategy was adopted here to improve the compatibility between the components of an immiscible polymer blend and strengthen the interface. PMMA, a mutually miscible polymer to both PVDF and ABS, improved the compatibility between the phases by localizing at the blends interface. This was supported by the core-shell formation with PMMA as the shell and ABS as the core as observed from the SEM micrographs. This phenomenon was strongly contingent on the concentration of PMMA in the blends. This strategy was further extended to localize graphene oxide (GO) sheets at the blends interface by chemically coupling it to PMMA (PMMA-g-GO). A dramatic increment of ca. 84% in the Young's modulus and ca. 124% in the yield strength was observed in the presence of PMMA-g-GO with respect to the neat blends. A simultaneous increment in both the strength and the modulus was observed in the presence of PMMA-g-GO whereas, only addition of GO resulted in a moderate improvement in the yield strength. This study reveals that a mutually miscible polymer can render compatibility between the immiscible pair and can improve the stress transfer at the interface.