992 resultados para 318-U1361B
Resumo:
The influence of nonstationary turbulence on rotor and propeller systems is discussed. The review is made from a common analytical basis of nonstationary approach, with emphasis on concepts rather than on details. The necessity of such an approach and its feasibility for predicting a complete set of gust and response statistics together with correlations with somewhat limited test data are appraised.
Resumo:
(I): M r = 258.34, triclinic, Pi, a = 9.810 (3), b=9.635(3), e=15.015(4)A, a=79.11(2), #= 102.38 (3), y = 107.76 (3) o, V= 1308.5 A 3, Z = 4, Din= 1.318 (3) (by flotation in KI solution), D x = 1.311 g cm -3, Cu Ka, 2 = 1.5418/~, g = 20-05 cm -1, F(000) = 544, T---- 293 K, R = 0.074 for 2663 reflections. (II): M r = 284.43, monoclinic, P2~/c, a= 17.029 (5), b=6.706 (5), c= 14.629 (4), t= 113.55 (2) ° , V=1531.4A 3, Z=4, Dm=1.230(5) (by flotation in KI solution), Dx= 1.234gem -3, Mo Ka, 2 = 0.7107 A, g = 1.63 cm-1; F(000) = 608, T= 293 K, R = 0.062 for 855 reflections. The orientation of the C=S chromophores in the crystal lattice and their reactivity in the crystalline state are discussed. The C--S bonds are much shorter than the normal bond length [1.605 (4) (I), 1.665 (8) A (II) cf. 1.71 A].
Resumo:
THE addition of catalysts normally serves the purpose of imparting a desired burning rate change in a composite propellant. These may either retard or enhance the burning rate. Some often quoted catalysts are oxides, chromites and chromates of metals. A lot of work has been done on rinding the effect of the addition of some of these catalysts on the burning rate; however, none seems to have appeared on the influence of lithium fluoride (LiF). Only qualitative reduction in the burning rate of composite propellants with the addition of LiF was reported by Williams et al.1 Dickinson and Jackson2 reported a slight decrease in the specific impulse of composite propellant with the addition of LiF; however, they made no mention of the effect of its addition on the burning rate. We have studied the effect of the addition of varying amounts of LiF on the burning rate of Ammonium Perchlorate (AP)-Polyester propellant.
Resumo:
Despite much research on forest biodiversity in Fennoscandia, the exact mechanisms of species declines in dead-wood dependent fungi are still poorly understood. In particular, there is only limited information on why certain fungal species have responded negatively to habitat loss and fragmentation, while others have not. Understanding the mechanisms behind species declines would be essential for the design and development of ecologically effective and scientifically informed conservation measures, and management practices that would promote biodiversity in production forests. In this thesis I study the ecology of polypores and their responses to forest management, with a particular focus on why some species have declined more than others. The data considered in the thesis comprise altogether 98,318 dead-wood objects, with 43,085 observations of 174 fungal species. Out of these, 1,964 observations represent 58 red-listed species. The data were collected from 496 sites, including woodland key habitats, clear-cuts with retention trees, mature managed forests, and natural or natural-like forests in southern Finland and Russian Karelia. I show that the most relevant way of measuring resource availability can differ to a great extent between species seemingly sharing the same resources. It is thus critical to measure the availability of resources in a way that takes into account the ecological requirements of the species. The results show that connectivity at the local, landscape and regional scales is important especially for the highly specialized species, many of which are also red-listed. Habitat loss and fragmentation affect not only species diversity but also the relative abundances of the species and, consequently, species interactions and fungal successional pathways. Changes in species distributions and abundances are likely to affect the food chains in which wood-inhabiting fungi are involved, and thus the functioning of the whole forest ecosystem. The findings of my thesis highlight the importance of protecting well-connected, large and high-quality forest areas to maintain forest biodiversity. Small habitat patches distributed across the landscape are likely to contribute only marginally to protection of red-listed species, especially if habitat quality is not substantially higher than in ordinary managed forest, as is the case with woodland key habitats. Key habitats might supplement the forest protection network if they were delineated larger and if harvesting of individual trees was prohibited in them. Taking the landscape perspective into account in the design and development of conservation measures is critical while striving to halt the decline of forest biodiversity in an ecologically effective manner.
Resumo:
THE following equations governing the phenomenon of intrinsic instability of combustion, leading to low frequency oscillations in a rocket motor using a single liquid propellant, were derived and investigated by L. Crocco.
Resumo:
We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.
Resumo:
A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.
Resumo:
The solubility of a drug, n-(4-ethoxyphenyl)ethanamide (phenacetin), in supercritical carbon dioxide was determined by a Saturation method at (308, 318, and 328) K from (9 to 19) MPa. The Solubilities in mole fraction of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide were in the range of 1.29.10(-5) to 2.88.10(-5), 1.13.10(-5) to 3.65.10(-5), and 0.91.10(-5) to 4.28.10(-5) at (308, 3 18, and 328) K, respectively. The solubility data were correlated with the Peng-Robinson equation of state models and the Mendez-Santiago and Teja model.
Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical CO2 With and Without Cosolvents
Resumo:
The solubilities of hexadecanoic acid (palmitic acid) and octadecanoic acid (stearic acid) in supercritical carbon dioxide without cosolvents and with two cosolvents, namely, ethanol and 3-methyl-1-butanol, were determined at (308 and 318) K at pressures varying from (12.8 to 22.6) MPa. The solubility data, in both the absence and presence of cosolvents, were correlated by a model proposed by Mendez-Santiago and Teja.
Resumo:
Objective(s) To describe how doctors define and use the terms “futility” and “futile treatment” in end-of-life care. Design, Setting, Participants A qualitative study using semi-structured interviews with 96 doctors across a range of specialties who treat adults at the end of life. Doctors were recruited from three large Australian teaching hospitals and were interviewed from May to July 2013. Results Doctors’ conceptions of futility focused on the quality and chance of patient benefit. Aspects of benefit included physiological effect, weighing benefits and burdens, and quantity and quality of life. Quality and length of life were linked, but many doctors discussed instances when benefit was determined by quality of life alone. Most doctors described the assessment of chance of success in achieving patient benefit as a subjective exercise. Despite a broad conceptual consensus about what futility means, doctors noted variability in how the concept was applied in clinical decision-making. Over half the doctors also identified treatment that is futile but nevertheless justified, such as short-term treatment as part of supporting the family of a dying person. Conclusions There is an overwhelming preference for a qualitative approach to assessing futility, which brings with it variation in clinical decision-making. “Patient benefit” is at the heart of doctors’ definitions of futility. Determining patient benefit requires discussions with patients and families about their values and goals as well as the burdens and benefits of further treatment.
Resumo:
Bandwidth allocation for multimedia applications in case of network congestion and failure poses technical challenges due to bursty and delay sensitive nature of the applications. The growth of multimedia services on Internet and the development of agent technology have made us to investigate new techniques for resolving the bandwidth issues in multimedia communications. Agent technology is emerging as a flexible promising solution for network resource management and QoS (Quality of Service) control in a distributed environment. In this paper, we propose an adaptive bandwidth allocation scheme for multimedia applications by deploying the static and mobile agents. It is a run-time allocation scheme that functions at the network nodes. This technique adaptively finds an alternate patchup route for every congested/failed link and reallocates the bandwidth for the affected multimedia applications. The designed method has been tested (analytical and simulation)with various network sizes and conditions. The results are presented to assess the performance and effectiveness of the approach. This work also demonstrates some of the benefits of the agent based schemes in providing flexibility, adaptability, software reusability, and maintainability. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)(2) formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.