973 resultados para 2 Trapped Ions
Resumo:
The L-shell ionization processes of a Ne gas target associated with single-electron capture by bombardment of Cq+ and Oq+ (q=2,3) are investigated using the projectile-recoil-ion coincidence method in the energy range from 80 to 400 keV/u (v(p)=1.8-4 a.u.). The cross-section ratios (R-k1) of k-fold ionization to single capture are compared with the results for He2+-Ne collisions by Dubois [Phys. Rev. A 36, 2585 (1987)]. All the velocity dependences are quite similar. The ratios increase as the projectile energy increases in the lower-energy region, reach the maxima for projectile energies around E-max=160q(1/2) keV/u, and then decrease at higher energies. These results qualitatively agree with our calculations in terms of the Bohr-Lindhard model within the independent-electron approximation.
Resumo:
To investigate the effects of pre-exposure of mouse testis to low-dose C-12(6+) ions on cytogenetics of spermatogonia and spermatocytes induced by subsequent high-dose irradiation. the testes of outbred Kun-Ming strain mice were irradiated with 0.05 Gy of C-12(6+) ions as the pre-exposure dose, and then irradiated with 2 Gy as challenging dose at 4 h after per-exposure. Poly(ADP-ribose) polymerase (PARPs) activity and PARP-1 protein expression were respectively measured by using the enzymatic and Western blot assays at 4 h after irradiation; chromosomal aberrations in spermatogonia and spermatocytes were analyzed by the air-drying method at 8 h after irradiation. The results showed that there was a significant increase in the frequency of chromosomal aberrations and significant reductions of PARP activity and PARP-1 expression level in the mouse testes irradiated with 2 Gy of C-12(6+) ions. However, pre-exposure of mouse testes to a low dose of C-12(6+) ions significantly increased PARPs activity and PARP-1 expression and alleviated the harmful effects induced by a subsequent high-dose irradiation. PARP activity inhibitor 3-aminobenzamide (3-AB) treatment blocked the effects of PARP-1 on cytogenetic adaptive response induced by low-dose C-12(6+) ion irradiation. The data suggest that pre-exposure of testes to a low dose of heavy ions can induce cytogenetic adaptive response to subsequent high-dose irradiation. The increase of PARP-1 protein induced by the low-dose ionizing irradiation may be involved in the mechanism of these observations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A thick natural uranium target was bombarded with a 60 MeV/u O-18 beam. The neutron-rich isotope Ra-230 as the target residue was produced through the multinucleon transfer reaction (U-238-4p-4n). The barium and radium fraction as BaCl2 precipitate were radiochemically separated first from the mixture of uranium and reaction products. Then, the radium fraction was separated from BaCl2 precipitate by using cation exchange technique. The gamma-ray spectra of the Ra fraction were measured using an HPGe detector. The production cross sections of Ra-230 were obtained by a combination of the radiochemical separation technique and off-line gamma-ray spectroscopy. The cross section of Ra-230 has been determined to be 66 +/- 20 mu b.
Resumo:
Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15 mu g/cm(2) carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.
Resumo:
DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of '' Tail DNA (%)'' (TD) and "Olive tail moment" (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radio sensitivity
Resumo:
Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.
Resumo:
Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.
Resumo:
T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.
Resumo:
The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small.
Resumo:
A Superconducting ECR ion source with Advanced design in Lanzhou (SECRAL) was successfully built to produce intense beams of highly charged ions for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis 3.6T at injection, 2.2T at extraction and a radial sextupole field of 2.0T at plasma chamber wall. A unique feature of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. During the ongoing commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.2kW and it turned out the performance is very promising. Some record ion beam intensities have been produced, for instance, 810e mu A of O7+, 505e mu A of Xe20+, 306e mu A of Xe27+, 21e mu A of Xe34+, 2.4e mu A of Xe38+ and so on. To reach better results for highly charged ion beams, further modifications such as an aluminium chamber with better cooling, higher microwave power and a movable extraction system will be done, and also emittance measurements are being prepared.
Resumo:
Hepatoma and melanoma cells were exposed to C-12(6+) beams generated by HIRFL facility and gamma-rays and the cell response was studied by colony assays as well as the analysis of RBE of carbon ions was evolved. The survival curves of cells irradiated by heavy ions were different from those of cells irradiated by gamma-rays. And two kinds of cell showed the obvious discrepancy in response to the photon and ion irradiation. The results showed that heavy ions have special physical properties and mighty potency to kill cell in both single and fractional irradiation meanwhile it can kill tumor cells with high radioresistance more efficiently. When involved in clinical therapy, heavy ions will enhance the therapy efficiency and decrease the suffering of patients because it can impair the repair for sublethal damage of cells which can lead to fewer irradiation fractions.
Resumo:
The single charge transfer process in He-3(2+)+He-4 collisions is investigated using the quantum-mechanical molecular-orbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6 keV and 10 keV for the projectile He-3(2+). Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.
Resumo:
The X-ray emission induced by highly charged argon and xenon ions impinging on a beryllium surface is investigated. It is found that spectra of the X-ray induced by Ar-17,Ar-18+ interacting with the surface are very different from those of the X-ray induced by Ar-17,Ar-18+ interacting with residual gases. The result provides an experimental evidence for the existence of hollow atoms below the surface. Several unexpected X-ray lines are also found in the experiment. Firstly, K X-rays are observed when Ar16+ ions which initially have no K shell holes interact with the surface. Secondly, if there are more than 2 M shell vacancies at the initial time, strong M alpha alpha two-electron-one-photon (TEOP) transitions are found in the collisions of Xe-28+,Xe-29+,Xe-30+ ions with the surface.
Resumo:
In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.
Resumo:
We describe a low level of chromatid-type aberrations which included the relatively rare isochromatid/chromatid triradial in peripheral blood lymphocytes that were irradiated, ostensibly in GO, with accelerated heavy C-12 ions. These were produced only at the energies of 69 MeV/n (34.6 keV/ mu m), almost absent at the energy of either 58.6 McV/n (46.07 keV/mu m) or 19.3 MeV/n (97 keV/mu m), nor were they found after low-LET X-rays. Mechanisms potentially responsible for their formation are discussed.