979 resultados para 1172 Environmental sciences


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cells of multicellular organisms have differentiated to carry out specific functions that are often accompanied by distinct cell morphology. The actin cytoskeleton is one of the key regulators of cell shape subsequently controlling multiple cellular events including cell migration, cell division, endo- and exocytosis. A large set of actin regulating proteins has evolved to achieve and tightly coordinate this wide range of functions. Some actin regulator proteins have so-called house keeping roles and are essential for all eukaryotic cells, but some have evolved to meet the requirements of more specialized cell-types found in higher organisms enabling complex functions of differentiated organs, such as liver, kidney and brain. Often processes mediated by the actin cytoskeleton, like formation of cellular protrusions during cell migration, are intimately linked to plasma membrane remodeling. Thus, a close cooperation between these two cellular compartments is necessary, yet not much is known about the underlying molecular mechanisms. This study focused on a vertebrate-specific protein called missing-in-metastasis (MIM), which was originally characterized as a metastasis suppressor of bladder cancer. We demonstrated that MIM regulates the dynamics of actin cytoskeleton via its WH2 domain, and is expressed in a cell-type specific manner. Interestingly, further examination showed that the IM-domain of MIM displays a novel membrane tubulation activity, which induces formation of filopodia in cells. Following studies demonstrated that this membrane deformation activity is crucial for cell protrusions driven by MIM. In mammals, there are five members of IM-domain protein family. Functions and expression patterns of these family members have remained poorly characterized. To understand the physiological functions of MIM, we generated MIM knockout mice. MIM-deficient mice display no apparent developmental defects, but instead suffer from progressive renal disease and increased susceptibility to tumors. This indicates that MIM plays a role in the maintenance of specific physiological functions associated with distinct cell morphologies. Taken together, these studies implicate MIM both in the regulation of the actin cytoskeleton and the plasma membrane. Our results thus suggest that members of MIM/IRSp53 protein family coordinate the actin cytoskeleton:plasma membrane interface to control cell and tissue morphogenesis in multicellular organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant species differ in their effects on ecosystem productivity and it is recognised that these effects are partly due to plant species-specific influences on soil processes. Until recently, however, not much attention was given to the potential role played by soil biota in these species-specific effects. While soil decomposers are responsible for governing the availability of nutrients for plant production, they simultaneously depend on the amount of carbon provided by plants. Litter and rhizodeposition constitute the two basal resources that plants provide to soil decomposer food webs. While it has been shown that both of these can have effects on soil decomposer communities that differ among plant species, the putative significance of these effects for plant nitrogen (N) acquisition is currently understudied. My PhD work aimed at clarifying whether the species-specific influences of three temperate grassland plants on the soil microfood-web, through rhizodeposition and litter, can feed back to plant N uptake. The methods and approach used (15N labelling of plant litter in microcosm experiments) revealed to be an effective combination of tools in studying these feedbacks. Plant effects on soil organisms were shown to differ significantly between plant species and the effects could be followed across several trophic levels. The labelling of litter further permitted the evaluation of plant acquisition of N derived from soil organic matter. The results show that the structure of the soil microfood-web can have a significant role in plant N acquisition when the structure is experimentally manipulated, such as when comparing systems consisting of microbes to those consisting of microbes and their grazers. However, despite this, the results indicate that differences in N uptake from soil organic matter between different plant species are not related to the effects these species exert on the structure of the soil microfood-web. Rather, these differences in N uptake seem to be determined by other species-specific traits of live plants and their litter. My results thus indicate that different resources provided by different plant species may not induce species-specific decomposer feedbacks on plant N uptake from soil organic matter. This further suggests that the species-specific plant effects on soil decomposer communities may not, at least in the short term, have significant consequences on plant production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Growth is a fundamental aspect of life cycle of all organisms. Body size varies highly in most animal groups, such as mammals. Moreover, growth of a multicellular organism is not uniform enlargement of size, but different body parts and organs grow to their characteristic sizes at different times. Currently very little is known about the molecular mechanisms governing this organ-specific growth. The genome sequencing projects have provided complete genomic DNA sequences of several species over the past decade. The amount of genomic sequence information, including sequence variants within species, is constantly increasing. Based on the universal genetic code, we can make sense of this sequence information as far as it codes proteins. However, less is known about the molecular mechanisms that control expression of genes, and about the variations in gene expression that underlie many pathological states in humans. This is caused in part by lack of information about the second genetic code that consists of the binding specificities of transcription factors and the combinatorial code by which transcription factor binding sites are assembled to form tissue-specific and/or ligand-regulated enhancer elements. This thesis presents a high-throughput assay for identification of transcription factor binding specificities, which were then used to measure the DNA binding profiles of transcription factors involved in growth control. We developed ‘enhancer element locator’, a computational tool, which can be used to predict functional enhancer elements. A genome-wide prediction of human and mouse enhancer elements generated a large database of enhancer elements. This database can be used to identify target genes of signaling pathways, and to predict activated transcription factors based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c- and N-Myc genes, which has implications to organ specific growth control and tumor type specificity of oncogenes. Furthermore, we were able to locate a variation in a single nucleotide, which carries a susceptibility to colorectal cancer, to an enhancer element and propose a mechanism by which this SNP might be involved in generation of colorectal cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) acting through ionotropic GABAA receptors plays a crucial role in the activity of the central nervous system (CNS). It triggers Ca2+ rise providing trophic support in developing neurons and conducts fast inhibitory function in mature neuronal networks. There is a developmental change in the GABAA reversal potential towards more negative levels during the first two postnatal weeks in rodent hippocampus. This change provides the basis for mature GABAergic activity and is attributable to the developmental expression of the neuron-specific potassium chloride cotransporter 2 (KCC2). In this work we have studied the mechanisms responsible for the control of KCC2 developmental expression. As a model system we used hippocampal dissociated cultures plated from embryonic day (E) 17 mice embryos before the onset of KCC2 expression. We showed that KCC2 was significantly up-regulated during the first two weeks of culture development. Interestingly, the level of KCC2 upregulation was not altered by chronic pharmacological blockage of action potentials as well as GABAergic and glutamatergic synaptic transmission. By in silico analysis of the proximal KCC2 promoter region we identified 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. One of these transcription factors, namely early growth response factor 4 (Egr4), had similar developmental profile as KCC2 and considerably increased the activity of mouse KCC2 gene in neuronal cells. Next we investigated the involvement of neurotrophic factors in regulation of Egr4 and KCC2 expression. We found that in immature hippocampal cultures Egr4 and KCC2 levels were strongly up-regulated by brain derived neurotrophic factor (BDNF)and neurturin. The effect of neurotrophic factors was dependent on the activation of a mitogen activated protein kinase (MAPK) signal transduction pathway. Intact Egr4-binding site in proximal KCC2 promoter was required for BDNF-induced KCC2 transcription. In vitro data were confirmed by several in vivo experiments where we detected an upregulation of KCC2 protein levels after intrahippocampal administration of BDNF or neurturin. Importantly, a MAPK-dependent rise in Egr4 and KCC2 expression levels was also observed after a period of kainic acid-induced seizure activity in neonatal rats suggesting that neuronal activity might be involved in Egr4-mediated regulation of KCC2 expression. Finally we demonstrated that the mammalian KCC2 gene (alias Slc12a5) generated two neuron-specific isoforms by using alternative promoters and first exons. A novel isoform of KCC2, termed KCC2a, differed from the previously known KCC2b isoform by 40 unique N-terminal amino acid residues. KCC2a expression was restricted to CNS,remained relatively constant during postnatal development, and contributed 20 50% of total KCC2 mRNA expression in the neonatal mouse brainstem and spinal cord. In summary, our data provide insight into the complex regulation of KCC2 expression during early postnatal development. Although basal KCC2 expression seems to be intrinsically regulated, it can be further augmented by neurotrophic factors or by enhanced activity triggering MAPK phosphorylation and Egr4 induction. Additional KCC2a isoform, regulated by another promoter, provides basal KCC2 level in neonatal brainstem and spinal cord required for survival of KCC2b knockout mice.