965 resultados para well-structured transition systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines the factors facilitating the transfer admission of students broadly classified as Black from a single community college into a selective engineering college. The work aims to further research on STEM preparation and performance for students of color, as well as scholarship on increasing access to four-year institutions from two-year schools. Factors illuminating Underrepresented Racial and Ethnic Minority (URM) student pathways through Science, Technology, Engineering, and Mathematics (STEM) degree programs have often been examined through large-scale quantitative studies. However, this qualitative study complements quantitative data through demographic questionnaires, as well as semi-structured individual and group. The backgrounds and voices of diverse Black transfer students in four-year engineering degree programs were captured through these methods. Major findings from this research include evidence that community college faculty, peer networks, and family members facilitated transfer. Other results distinguish Black African from Black American transfers; included in these distinctions are depictions of different K-12 schooling experiences and differences in how participants self-identified. The findings that result from this research build upon the few studies that account for expanded dimensions of student diversity within the Black population. Among other demographic data, participants’ countries of birth and years of migration to the U.S. (if applicable) are included. Interviews reveal participants’ perceptions of factors impacting their educational trajectories in STEM and subsequent ability to transfer into a competitive undergraduate engineering program. This study is inclusive of, and reveals an important shifting demographic within the United States of America, Black Africans, who represent one of the fastest-growing segments of the immigrant population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Type 1 Diabetes (T1D) management often worsens as children become adolescents. This can be a difficult time for parents as they hand over responsibility of diabetes management to their adolescent. Objectives: To look at the experiences of parents with a child with T1D as they move to adolescence and take more responsibility for their diabetes management. To find out about parents’ experience of support during this transition. Subjects: Three parents of adolescents with T1D. Participants were recruited from the NHS Highland Paediatric Diabetes Service. Methods: Participants took part in a one-to-one semi-structured interview with a researcher. Interpretative Phenomenological Analysis was used to analyse the interviews and find common themes across the interviews. Results: Participants experienced worry throughout their child’s transition to adolescence. They found it difficult to let their child take responsibility for their diabetes but acknowledged that their involvement caused tensions with their adolescent. Participants’ experience was that there were a number of practical adjustments to be made with a diagnosis of T1D and educating the network around their child was important. The participants reported that the diagnosis of T1D had an impact on the whole family and not just the child with the diagnosis. The parents felt well supported medically but said that the amount of time before their first clinic appointment felt too long. All participants had concerns about their adolescent moving to the adult diabetic service. Conclusions: Participants experienced worry relating to aspects of their adolescents T1D that they could not control, but were aware of the tensions caused by trying to keep elements of control. Areas of future research were identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Part 4: Transition Towards Product-Service Systems

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Centro de Desenvolvimento Sustentável, 2015.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A starting point for contributing to the greater good is to examine and interrogate existing knowledge organization practices that do harm, whether that harm is intentional or accidental, or an inherent and unavoidable evil. As part of the transition movement, the authors propose to inventory the manifestations and implications of the production of suffering by knowledge organization systems through constructing a taxonomy of harm. Theoretical underpinnings guide ontological commitment, as well as the recognition of the problem of harm in knowledge organization systems. The taxonomy of harm will be organized around three main questions: what hap- pens?, who participates?, and who is affected and how? The aim is to heighten awareness of the violence that classifications and naming practices carry, to unearth some of the social conditions and motivations that contribute to and are reinforced by knowledge organization systems, and to advocate for intentional and ethical knowledge organization practices to achieve a minimal level of harm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rise in population growth, as well as nutrient mining, has contributed to low agricultural productivity in Sub-Saharan Africa (SSA). A plethora of technologies to boost agricultural production have been developed but the dissemination of these agricultural innovations and subsequent uptake by smallholder farmers has remained a challenge. Scientists and philanthropists have adopted the Integrated Soil Fertility Management (ISFM) paradigm as a means to promote sustainable intensification of African farming systems. This comparative study aimed: 1) To assess the efficacy of Agricultural Knowledge and Innovation Systems (AKIS) in East (Kenya) and West (Ghana) Africa in the communication and dissemination of ISFM (Study I); 2) To investigate how specifically soil quality, and more broadly socio-economic status and institutional factors, influence farmer adoption of ISFM (Study II); and 3) To assess the effect of ISFM on maize yield and total household income of smallholder farmers (Study III). To address these aims, a mixed methodology approach was employed for study I. AKIS actors were subjected to social network analysis methods and in-depth interviews. Structured questionnaires were administered to 285 farming households in Tamale and 300 households in Kakamega selected using a stratified random sampling approach. There was a positive relationship between complete ISFM awareness among farmers and weak knowledge ties to both formal and informal actors at both research locations. The Kakamega AKIS revealed a relationship between complete ISFM awareness among farmers and them having strong knowledge ties to formal actors implying that further integration of formal actors with farmers’ local knowledge is crucial for the agricultural development progress. The structured questionnaire was also utilized to answer the query pertaining to study II. Soil samples (0-20 cm depth) were drawn from 322 (Tamale, Ghana) and 459 (Kakamega, Kenya) maize plots and analysed non-destructively for various soil fertility indicators. Ordinal regression modeling was applied to assess the cumulative adoption of ISFM. According to model estimates, soil carbon seemed to preclude farmers from intensifying input use in Tamale, whereas in Kakamega it spurred complete adoption. This varied response by farmers to soil quality conditions is multifaceted. From the Tamale perspective, it is consistent with farmers’ tendency to judiciously allocate scarce resources. Viewed from the Kakamega perspective, it points to a need for farmers here to intensify agricultural production in order to foster food security. In Kakamega, farmers with more acidic soils were more likely to adopt ISFM. Other household and farm-level factors necessary for ISFM adoption included off-farm income, livestock ownership, farmer associations, and market inter-linkages. Finally, in study III a counterfactual model was used to calculate the difference in outcomes (yield and household income) of the treatment (ISFM adoption) in order to estimate causal effects of ISFM adoption. Adoption of ISFM contributed to a yield increase of 16% in both Tamale and Kakamega. The innovation affected total household income only in Tamale, where ISFM adopters had an income gain of 20%. This may be attributable to the different policy contexts under which the two sets of farmers operate. The main recommendations underscored the need to: (1) improve the functioning of AKIS, (2) enhance farmer access to hybrid maize seed and credit, (3) and conduct additional multi-locational studies as farmers operate under varying contexts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smart Farming Technologies (SFT) is a term used to define the set of digital technologies able not only to control and manage the farm system, but also to connect it to the many disruptive digital applications posed at multiple links along the value chain. The adoption of SFT has been so far limited, with significant differences at country-levels and among different types of farms and farmers. The objective of this thesis is to analyze what factors contributes to shape the agricultural digital transition and to assess its potential impacts in the Italian agri-food system. Specifically, this overall research objective is approached under three different perspectives. Firstly, we carry out a review of the literature that focuses on the determinants of adoption of farm-level Management Information Systems (MIS), namely the most adopted smart farming solutions in Italy. Secondly, we run an empirical analysis on what factors are currently shaping the adoption of SFT in Italy. In doing so, we focus on the multi-process and multi-faceted aspects of the adoption, by overcoming the one-off binary approach often used to study adoption decisions. Finally, we adopt a forward-looking perspective to investigate what the socio-ethical implications of a diffused use of SFT might be. On the one hand, our results indicate that bigger, more structured farms with higher levels of commercial integration along the agri-food supply chain are those more likely to be early adopters. On the other hand, they highlight the need for the institutional and organizational environment around farms to more effectively support farmers in the digital transition. Moreover, the role of several other actors and actions are discussed and analyzed, by highlighting the key role of specific agri-food stakeholders and ad-hoc policies, with the aim to propose a clearer path towards an efficient, fair and inclusive digitalization of the agrifood sector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent widespread use of social media platforms and web services has led to a vast amount of behavioral data that can be used to model socio-technical systems. A significant part of this data can be represented as graphs or networks, which have become the prevalent mathematical framework for studying the structure and the dynamics of complex interacting systems. However, analyzing and understanding these data presents new challenges due to their increasing complexity and diversity. For instance, the characterization of real-world networks includes the need of accounting for their temporal dimension, together with incorporating higher-order interactions beyond the traditional pairwise formalism. The ongoing growth of AI has led to the integration of traditional graph mining techniques with representation learning and low-dimensional embeddings of networks to address current challenges. These methods capture the underlying similarities and geometry of graph-shaped data, generating latent representations that enable the resolution of various tasks, such as link prediction, node classification, and graph clustering. As these techniques gain popularity, there is even a growing concern about their responsible use. In particular, there has been an increased emphasis on addressing the limitations of interpretability in graph representation learning. This thesis contributes to the advancement of knowledge in the field of graph representation learning and has potential applications in a wide range of complex systems domains. We initially focus on forecasting problems related to face-to-face contact networks with time-varying graph embeddings. Then, we study hyperedge prediction and reconstruction with simplicial complex embeddings. Finally, we analyze the problem of interpreting latent dimensions in node embeddings for graphs. The proposed models are extensively evaluated in multiple experimental settings and the results demonstrate their effectiveness and reliability, achieving state-of-the-art performances and providing valuable insights into the properties of the learned representations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

My Ph.D. thesis was dedicated to the exploration of different paths to convert sunlight into the shape of chemical bonds, by the formation of solar fuels. During the past three years, I have focused my research on two of these, namely molecular hydrogen H2 and the reduced nicotinamide adenine dinucleotide enzyme cofactor NAD(P)H. The first could become the ideal energy carrier for a truly clean energy system; it currently represents the best chance to liberate humanity from its dependence on fossil fuels. To address this, I studied different systems which can achieve proton reduction upon light absorption. More specifically, part of my work was aimed to the development of a cost-effective and stable catalyst in combination with a well-known photochemical cycle. To this extent, I worked on transition metal oxides which, as demonstrated in this work, have been identified as promising H2 evolution catalysts, showing excellent activity, stability, and previously unreported versatility. Another branch of my work on hydrogen production dealt with the use of a new class of polymeric semiconductor materials to absorb light and convert it into H2. The second solar fuel mentioned above is a key component of the most powerful methods for chemical synthesis: enzyme catalysis. The high cost of the reduced forms prohibits large-scale utilization, so artificial photosynthetic approaches for regenerating it are being intensively studied. The first system I developed exploits the tremendous reducing properties of a scarcely known ruthenium complex which is able to reduce NAD+. Lastly, I sought to revert the classical role of the sacrificial electron donor to an active component of the system and, to boost the process, I build up an autonomous microfluidic system able to generate highly reproducible NAD(P)H amount, demonstrating the superior performance of microfluidic reactors over batch and representing another successful photochemical NAD(P)H regeneration system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física