965 resultados para ubiquitin conjugating enzymes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1x), trained 3 days per week (TRE3x) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3x. PYC enhancement was even higher in TRE5x (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to beta-cell surviving rather than insulin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the anti-tumor activity of Amblyomin-X, a serine protease Kunitz-type inhibitor. Amblyomin-X induced tumor mass regression and decreased number of metastatic events in a B16F10 murine melanoma model. Alterations on expression of several genes related to cell cycle were observed when two tumor cell lines were treated with Amblyomin-X. PSMB2, which encodes a proteasome subunit, was differentially expressed, in agreement to inhibition of proteasomal activity in both cell lines. In conclusion, our results indicate that Amblyomin-X selectively acts on tumor cells by inducing apoptotic cell death, possibly by targeting the ubiquitin-proteasome system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. Gibson

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SILVA, Fatima C. B. L. et al. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, p. 561-569, 2006.ISSN: 0965-1748.DOI: 10.1016/j.ibmb.2006.04.004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudaram-se as alterações de atividade das enzimas musculares creatino quinase (CK), lactato desidrogenase (LDH) e aspartato aminotransferase (AST) em um grupo de cavalos que utilizados em provas de enduro de 70 e 100km de distância, em cinco competições. Os valores (U/l) basais (antes da largada) foram 245,13±9,84 para CK, 496,61±14,76 para LDH e 328,95±8,65 para AST. Todas as atividades das enzimas decresceram no primeiro momento das provas (~30km). Valores de pico, significativamente diferentes, foram alcançados para CK (413,59±50,75) imediatamente após 70km de distância; 24 horas após para LDH (628,61±33,30); e 48 horas após as provas para AST (389,89±16,96). A monitoração do período de recuperação revelou diferente comportamento entre as concentrações enzimáticas com CK retornando aos valores basais 24 horas pós-provas (279,61 ± 23,05). LDH e AST retornaram aos valores basais, 72 horas pós-provas (505,25±33,78 e 359,35±24,90, respectivamente). Os dados obtidos revelaram diferentes alterações na concentração de enzimas musculares de cavalos de enduro, diretamente relacionadas com a duração do esforço.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor), Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two metabolism assays were carried out to determine corn and soybean meal metabolizable energy when enzymes were added. In the first trial, 35 cockerels per studied feedstuff (corn and soybean meal) were distributed in a completely randomized experimental design with four treatments of seven replicates of one bird each. The evaluated treatments were: ingredient (corn and soybean meal) with no enzyme addition, with the addition of an enzyme complex (xylanase, amylase, protease - XAP), xylanase, or phytase. Precise feeding method was used to determine true metabolizable energy corrected for nitrogen balance (TMEn). The use of enzymes did not result in any differences (p>0.05) in soybean meal TMEn, but phytase improved corn TMEn in 2.3% (p=0.004). In the second trial, 280 seven-day-old broiler chicks were distributed in a completely randomized experimental design with seven treatments of five replicates of eight birds each. Treatments consisted of corn with no enzyme addition or with the addition of amylase, xylanase, phytase, XAP complex, XAP+phytase combination, or xylanase/ pectinase/β-glucanase complex (XPBG). Corn was supplemented with macro and trace minerals. Total excreta collection was used to determine apparent metabolizable energy corrected for nitrogen balance (AMEn). Differences were observed (p=0.08) in AMEn and dry matter metabolizability coefficient (p=0.03). The combination of the XAP complex with phytase promoted a 2.11% increase in corn AMEn values, and the remaining enzymes allowed increased between 0.86% and 1.66%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O efeito da inclusão de mananoligossacarídeo (MOS) e/ou enzimas em dietas de frangos sobre os títulos de anticorpos contra os vírus das doenças de Gumboro (VDG) e de Newcastle (VDN). Setecentos e cinqüenta aves foram distribuídas em um delineamento experimental inteiramente ao acaso, em arranjo fatorial 2 x 2 + 1, com dois níveis de MOS (0 e 0,1% até 21 dias e 0,05% de 22 até 42 dias de idade), dois níveis de enzimas (0 e 0,05%) e uma dieta-controle-positivo contendo antibióticos, totalizando cinco tratamentos com cinco repetições. Para análise dos anticorpos, amostras de sangue foram colhidas semanalmente por punção da veia jugular em duas aves de cada repetição. A primeira e a última colheita foram realizadas aos sete e 42 dias de idade, respectivamente. A inclusão de MOS resultou em aumento dos títulos contra VDG na quarta (P<0,03) e quinta (P<0,02) semanas, e contra VDN na terceira (P<0,01), quarta (P<0,03) e quinta (P<0,03) semanas de idade. O MOS foi efetivo em estimular a resposta imune humoral contra VDG e VDN vacinais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we investigate the possible toxicity of vanadyl sulfate (VOSO4), a compound capable of reducing hyperglycemia, on the following serum enzymes of diabetic young rats: alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LD) and creatine kinase (CK), as well as its effects on serum lipids. We find that at a concentration of 1 mg/mL VOSO4 has no toxic effect on the liver and muscles of diabetics young rats. These findings suggest that VOSO4 may be an alternative to insulin in the near future, due to its low cost, low toxicity and ready availability.