943 resultados para two-dimensional correlation spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic stimulation of the cochlea leads to a travelling wave in the cochlear fluids and on the basilar membrane (BM). It has long been suspected that this travelling wave leads to a steady streaming flow in the cochlea. Theoretical investigations suggested that the steady streaming might be of physiological relevance. Here, we present a quantitative study of the steady streaming in a computational model of a passive cochlea. The structure of the streaming flow is illustrated and the sources of streaming are closely investigated. We describe a source of streaming which has not been considered in the cochlea by previous authors. This source is also related to a steady axial displacement of the BM which leads to a local stretching of this compliant structure. We present theoretical predictions for the streaming intensity which account for these new phenomena. It is shown that these predictions compare well with our numerical results and that there may be steady streaming velocities of the order of millimetres per second. Our results indicate that steady streaming should be more relevant to low-frequency hearing because the strength of the streaming flow rapidly decreases for higher frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heating of a pink two-dimensional Co(II) coordination network {[Co2(μ2-OH2)(bdc)2(S-nia)2(H2O)(dmf)]·2(dmf)·(H2O)}n (1) built from 1,4-benzenedicarboxylic acid (H2bdc) residues and thionicotinamide (S-nia) ligands initiates a single-crystal-to-single-crystal transition accompanied by removal of both coordinated and co-crystallized solvents. In the dry blue form, [Co(bdc)(S-nia)]n (dry_1), the Co(II) centers changed from an octahedral to a square pyramidal configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data:  1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matlab script file of a two-dimensional (2-D) peat microtopographical model together with other supplementary files that are required to run the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper empirically investigates two areas of changes in firm behavior and performance at home before and after investing abroad. The first change is dependent upon the type of foreign direct investment (FDI): horizontal FDI or vertical FDI. The second change is dependent upon the firm’s domestic activities: production activities or non-production activities. From a theoretical standpoint, the impact of outward FDIs differs not only by type, but according to the firm’s activities. By exploiting two types of firm-level data that enable us to distinguish between production and non-production activities, our paper provides a detailed picture of the intra-firm changes in behavior and performance that occur as a result of production globalization.