881 resultados para therapeutic target


Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcoholism is a disorder marked by cycles of heavy drinking and chronic relapse, and adolescents are an age cohort particularly susceptible to consuming large amounts of alcohol, placing them at high risk for developing an alcohol use disorder. Adolescent humans and rats voluntarily consume more alcohol than their adult counterparts, suggesting that younger consumers of alcohol may be less sensitive to its aversive effects, which are regulated by the function of the hypothalamic-pituitary-adrenal (HPA) stress axis. While HPA axis dysfunction resulting from ethanol exposure has been extensively studied in adult animals, what happens in the adolescent brain remains largely unclear. In this study, chronic injections of ethanol was used to model alcohol dependence in adult and adolescent rats, and post-withdrawal anxiety behaviors were measured using light-dark box testing. Furthermore, corticosterone (CORT) release during treatment and after withdrawal was measured by collecting fecal and plasma samples from adults and adolescents. It was found that adults, but not adolescents, exhibit significant anxiety-like behavior following chronic ethanol withdrawal. Additionally, while the process of chronic ethanol treatment elicits an increase in day-by-day CORT release in both adults and adolescents, significantly sustained levels of CORT were not observed during withdrawal for either age group. Moreover, it was found that adults experience a longer-lasting CORT increase during chronic treatment, suggesting a larger and more robust period of dysfunction in the HPA axis for older consumers of alcohol. These results highlight CORT and glucocorticoids in general as a potential therapeutic target for treatment for alcoholism, especially that which has an onset during adolescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart failure (HF) is an increasingly prevalent and costly multifactorial syndrome with high morbidity and mortality rates. The exact pathophysiological mechanisms leading to the development of HF are not completely understood. Several emerging paradigms implicate cardiometabolic risk factors, inflammation, endothelial dysfunction, myocardial fibrosis, and myocyte dysfunction as key factors in the gradual progression from a healthy state to HF. Inflammation is now a recognized factor in disease progression in HF and a therapeutic target. Furthermore, the monocyte-platelet interaction has been highlighted as an important pathophysiological link between inflammation, thrombosis, endothelial activation, and myocardial malfunction. The contribution of monocytes and platelets to acute cardiovascular injury and acute HF is well established. However, their role and interaction in the pathogenesis of chronic HF are not well understood. In particular, the cross talk between monocytes and platelets in the peripheral circulation and in the vicinity of the vascular wall in the form of monocyte-platelet complexes (MPCs) may be a crucial element, which influences the pathophysiology and progression of chronic heart disease and HF. In this review, we discuss the role of monocytes and platelets as key mediators of cardiovascular inflammation in HF, the mechanisms of cell activation, and the importance of monocyte-platelet interaction and complexes in HF pathogenesis. Finally, we summarize recent information on pharmacological inhibition of inflammation and studies of antithrombotic strategies in the setting of HF that can inform opportunities for future work. We discuss recent data on monocyte-platelet interactions and the potential benefits of therapy directed at MPCs, particularly in the setting of HF with preserved ejection fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The androgen receptor (AR) is expressed in 60-80% of breast cancers (BC) across all molecular phenotypes, with a higher incidence in oestrogen receptor positive (ER+) BC compared to ER negative tumours. In ER+ disease, AR-expression has been linked to endocrine resistance which might be reversed with combined treatment targeting ER and AR. In triple negative BCs (TNBC), preclinical and clinical investigations have described a subset of patients that express the AR and are sensitive to androgen blockade, providing a novel therapeutic target. Enzalutamide, a potent 2nd generation anti-androgen, has demonstrated substantial preclinical and clinical anti-tumour activity in AR+ breast cancer. Short-term preoperative window of opportunity studies are a validated strategy for novel treatments to provide proof-of-concept and define the most appropriate patient population by directly assessing treatment effects in tumour tissue before and after treatment. The ARB study aims to assess the anti-tumour effects of enzalutamide in early ER+ breast cancer and TNBC, to identify the optimal target population for further studies and to directly explore the biologic effects of enzalutamide on BC and stromal cells. Methods: ARB is an international, investigator sponsored WOO phase II study in women with newly diagnosed primary ER+ BC or AR+ TNBC of ≥ 1cm. The study has two cohorts. In the ER+ cohort, postmenopausal patients will be randomised 2:1 to receive either enzalutamide (160mg OD) plus exemestane (50mg OD) or exemestane (25mg OD). In the TNBC cohort, AR+ will receive single agent treatment with enzalutamide (160mg OD). Study treatment is planned for 15–29 days, followed by surgery or neo-adjuvant therapy. Tissue and blood samples are collected before treatment and on the last day of study treatment. The primary endpoint is inhibition of tumour-cell proliferation, as measured by change in Ki67 expression, determined centrally by 2 investigators. Secondary endpoints include induction of apoptosis (Caspase3), circulating hormone levels and safety. ARB aims to recruit ≈235 patients from ≈40 sites in the UK, Germany, Spain and USA. The study is open to recruitment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: HER2 is an established therapeutic target in breast and gastric cancers. The role of HER2 in rectal cancer is unclear, as conflicting data on the prevalence of HER2 expression in this disease have been reported. We evaluated the prevalence of HER2 and its impact on the outcome of high-risk rectal cancer patients treated with neoadjuvant CAPOX and CRT±cetuximab in the EXPERT-C trial. PATIENTS AND METHODS: Eligible patients with available tumour tissue for HER2 analysis were included. HER2 expression was determined by immunohistochemistry (IHC) in pre-treatment biopsies and/or surgical specimens (score 0-3+). Immunostaining was scored according to the consensus panel recommendations on HER2 scoring for gastric cancer. Tumours with equivocal IHC result (2+) were tested for HER2 amplification by D-ISH. Tumours with IHC 3+ or D-ISH ratio ≥2.0 were classified as HER2+. The impact of HER2 on primary and secondary end points of the study was analysed. RESULTS: Of 164 eligible study patients, 104 (63%) biopsy and 114 (69%) surgical specimens were available for analysis. Only 3 of 104 (2.9%) and 3 of 114 (2.6%) were HER2+, respectively. In 77 patients with paired specimens, concordance for HER2 status was found in 74 (96%). Overall, 141 patients were assessable for HER2 and 6 out of 141 (4.3%) had HER2 overexpression and/or amplification. The median follow-up was 58.6 months. HER2 was not associated with a difference in the outcome for any of the study end points, including in the subset of 90 KRAS/BRAF wild-type patients treated±cetuximab. CONCLUSIONS: Based on the low prevalence of expression as recorded in the EXPERT-C trial, HER2 does not appear to represent a useful therapeutic target in high-risk rectal cancer. However, the role of HER2 as a potential predictive biomarker of resistance to anti-EGFR-based treatments and a therapeutic target in anti-EGFR refractory metastatic colorectal cancer (CRC) warrants further investigation. TRIAL REGISTRATION: ISRCTN Register: 99828560.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’inflammation du système nerveux central (SNC), appelée neuroinflammation, est un aspect inséparable des maladies neurodégénératives chroniques comme la sclérose en plaques (SEP) et la maladie d’Alzheimer (MA). La caractérisation de la signature moléculaire spécifique à chaque population cellulaire dans des pathologies distinctes va aboutir à la compréhension et donc au contrôle de la neuroinflammation. Le présent ouvrage a pour but de mieux comprendre les mécanismes d’action de deux types cellulaires myéloïdes, la microglie et les neutrophiles, au cours des affections neuroinflammatoires du SNC. Ainsi, le premier objectif a été de comprendre le rôle des cytokines IL-36 dans la neuroinflammation établie au cours de l’encéphalomyélite auto-immune expérimentale (EAE). Dans une seconde partie, l’objectif a été d’explorer l’action du GPR84, un récepteur couplé à la protéine G spécifique à la microglie dans le SNC, lors de l’altération des fonctions cérébrales dans un modèle de souris transgénique de la MA. Nos résultats démontrent que la voie de signalisation IL-36/IL36R est augmentée dans trois modèles différents de l’EAE, mais ne contribue pas au développement ni à la progression de la pathologie. En utilisant l’approche de cytométrie en flux nous identifions les neutrophiles comme la source majeure de l’IL-36γ. De plus, nous démontrons que la microglie exprime l’IL-36R et sa stimulation par l’IL-36γ conduit à la production de cytokines pro-inflammatoires. Dans un second temps, nous caractérisons l’augmentation de l’expression du GPR84 par la microglie dans le modèle murin de la MA APP/PS1. Ainsi, le croisement de ces souris avec des souris déficientes en GPR84 diminue l’activation et le recrutement de la microglie autour des plaques d’amyloïde-β et accélère le déclin cognitif. Nos études impliquent le GPR84 comme un acteur important dans le maintien de l’homéostasie neuronale puisque son absence favorise la dégénérescence des dendrites dans le cerveau. Les résultats obtenus dans cette thèse apportent de nouveaux éléments qui peuvent contribuer au développement des thérapies qui ciblent les cellules myéloïdes dans diverses pathologies du SNC. Ces données ouvrent de nouvelles pistes pour élucider le rôle de l’IL-36γ dans des maladies neurodégénératives. Enfin, pour une première fois, nous présentons un modèle murin permettant d’identifier le(s) ligand(s) endogène(s) du GPR84, une cible thérapeutique potentielle pour la prévention et/ou le traitement de la MA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’hypertension artérielle pulmonaire (HTAP) est une maladie caractérisée par l’augmentation progressive des résistances vasculaires pulmonaires causant une augmentation de la pression artérielle pulmonaire qui mène au décès prématuré des patients. Malgré une amélioration rapide ces dernières années des traitements spécifiques, les patients souffrant d’HTAP demeurent dyspnéiques et intolérants à l’effort. L’atteinte vasculaire pulmonaire est actuellement irréversible. Elle est également la source de plusieurs anomalies au niveau des systèmes cardiovasculaires, ventilatoires et musculaires constituant les principaux déterminants physiologiques de la capacité à l’effort des patients. Cette thèse a investigué différentes facettes de la tolérance à l’effort en HTAP : les différents mécanismes ayant un impact sur l’apport musculaire en oxygène, l’altération des voies de signalisation cellulaire impliquées dans l’angiogenèse musculaire et les mécanismes ayant un impact sur la régulation du débit sanguin et l’oxygénation cérébrale en HTAP. Nous avons premièrement documenté une diminution de l’apport en oxygène aux muscles squelettiques à l’effort des patients en relation avec une diminution de la densité capillaire musculaire. Ce défaut d’angiogenèse corrélait d’ailleurs avec la capacité à l’effort des sujets. Par la suite, nous avons étudié les voies de signalisations cellulaires de l’angiogenèse musculaire. Ces résultats ont permis de démontrer une diminution de l’expression de miR-126, unique aux patients HTAP, qui était responsable de la diminution de la densité capillaire et qui contribuait à leur intolérance à l’effort. De plus, il était possible de moduler in vivo l’expression de miR-126. L’expérimentation in vivo, à l’aide d’un modèle murin d’HTAP, a permis de rétablir l’expression de miR-126, d’augmenter la microcirculation musculaire et d’améliorer la tolérance à l’effort des animaux, ce qui met en lumière le potentiel thérapeutique de l’angiogenèse musculaire pour améliorer la capacité à l’effort en HTAP. Notre dernier projet a démontré que les patients HTAP présentaient une diminution de débit sanguin cérébral. Ce projet a également démontré que les changements de pression artérielle sont moins bien amortis par les vaisseaux cérébraux des patients et que leurs vaisseaux cérébraux étaient moins réactifs aux changements de CO2. Les patients présentaient aussi une augmentation de la sensibilité des chémorécepteurs centraux qui contribuait à augmenter leur ventilation au repos, mais aussi à l’exercice. Finalement, à l’effort, nous avons démontré que le débit sanguin cérébral des patients HTAP était principalement influencé par la pression artérielle alors que chez les sujets sains, le débit sanguin cérébral était influencé principalement par la PETCO2. Nous avons également démontré que les patients HTAP présentaient une diminution progressive de leur oxygénation cérébrale, qui corrélait avec leur capacité à l’effort. Les résultats obtenus au cours de ce doctorat démontrent bien que la capacité à l’effort en HTAP est aussi déterminée par plusieurs anomalies physiopathologiques périphériques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urokinase plasminogen activator (uPA) system (uPAS) comprises the uPA, its cell membrane receptor (uPAR) and two specific inhibitors, the plasminogen activator inhibitor 1 (PAI-1) and 2 (PAI-2). The uPA converts the plasminogen in the serine protease plasmin, involved in a number of physiopathological processes requiring basement membrane (BM) or extracellular matrix (ECM) remodelling, including tumor progression and metastasis. The tumor-promoting role of PAS is not limited to the degradation of ECM and BM required for local diffusion and spread to distant sites of malignant cells, but widens to tumor cell proliferation, adhesion and migration, intravasation, growth at the metastatic site and neoangiogenesis. The relevance of uPAS in cancer progression has been confirmed by several studies which documented an increased expression of uPA, uPAR and PAI-1 in different human malignancies, and a positive correlation between the levels of one or more of them and a poor prognosis. For these reasons, the uPAS components have aroused considerable interest as suitable targets for anticancer therapy, and several pharmacological approaches aimed at inhibiting the uPA and/or uPAR expression or function in preclinical and clinical settings have been described. In the present manuscript, we will first glance at uPAS biological functions in human cancer progression and its clinical significance in terms of prognosis and therapy. We will then review the main findings regarding expression and function of uPAS components in thyroid cancer tissues along with the experimental and clinical evidence suggesting its potential value as molecular prognostic marker and therapeutic target in thyroid cancer patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer cells have been noted to have an altered metabolic phenotype for over ninety years. In the presence of oxygen, differentiated cells predominately utilise the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to efficiently produce energy and the metabolites necessary for protein and lipid synthesis. However, in hypoxia, this process is altered and cells switch to a higher rate of glycolysis and lactate production to maintain their energy and metabolic needs. In cancer cells, glycolysis is maintained at a high rate, even in the presence of oxygen; a term described as “aerobic glycolysis”. Tumour cells are rapidly dividing and have a much greater need for anabolism compared to normal differentiated cells. Rapid glucose metabolism enables faster ATP production as well as a greater redistribution of carbons to nucleotide, protein, and fatty acid synthesis, thus maximising cell growth. Recently, other metabolic changes, driven by mutations in genes related to the TCA cycle, indicate an alternative role for metabolism in cancer, the “oncometabolite”. This is where a particular metabolite builds up within the cell and contributes to the tumorigenic process. One of these genes is isocitrate dehydrogenase (IDH) IDH is an enzyme that forms part of the tricarboxylic acid (TCA) cycle and converts isocitrate to α-ketoglutarate (α-KG). It exists in three isoforms; IDH1, IDH2 and IDH3 with the former present in the cytoplasm and the latter two in the mitochondria. Point mutations have been identified in the IDH1 and IDH2 genes in glioma which result in a gain of function by converting α-KG to 2-hydroxyglutarate (2HG), an oncometabolite. 2HG acts as a competitive inhibitor of the α-KG dependent dioxygenases, a superfamily of enzymes that are involved in numerous cellular processes such as DNA and histone demethylation. It was hypothesised that the IDH1 mutation would result in other metabolic changes in the cell other than 2HG production, and could potentially identify pathways which could be targeted for therapeutic treatment. In addition, 2HG can act as a potential competitive inhibitor of α-KG dependent dioxygenases, so it was hypothesised that there would be an effect on histone methylation. This may alter gene expression and provide a mechanism for tumourogenesis and potentially identify further therapeutic targets. Metabolic analysis of clinical tumour samples identified changes associated with the IDH1 mutation, which included a reduction in α-KG and an increase in GABA, in addition to the increase in 2HG. This was replicated in several cell models, where 13C labelled metabolomics was also used to identify a possible increase in metabolic flux from glutamate to GABA, as well as from α-KG to 2HG. This may provide a mechanism whereby the cell can bypass the IDH1 mutation as GABA can be metabolised to succinate in the mitochondria by GABA transaminase via the GABA shunt. JMJ histone demethylases are a subset of the α-KG dependent dioxygenases, and are involved in removing methyl groups from histone tails. Changes in histone methylation are associated with changes in gene expression depending on the site and extent of chemical modification. To identify whether the increase in 2HG and fall in α-KG was associated with inhibition of histone demethylases a histone methylation screen was used. The IDH1 mutation was associated with an increase in methylation of H3K4, which is associated with gene activation. ChiP and RNA sequencing identified an increase in H3K4me3 at the transcription start site of the GABRB3 subunit, resulting in an increase in gene expression. The GABRB3 subunit forms part of the GABA-A receptor, a chloride channel, which on activation can reduce cell proliferation. The IDH1 mutation was associated with an increase in GABA and GABRB3 subunit of the GABA-A receptor. This raises the possibility of GABA transaminase as a potential therapeutic target. Inhibition of this enzyme could reduce GABA metabolism, potentially reducing any beneficial effect of the GABA shunt in IDH1 mutant tumours, and increasing activation of the GABA-A receptor by increasing the concentration of GABA in the brain. This in turn may reduce cell proliferation, and could be achieved by using Vigabatrin, a GABA transaminase inhibitor licensed for use in epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of the vascular endothelium is to maintain vascular homeostasis, by providing an anti-thrombotic, anti-inflammatory and vasodilatory interface between circulating blood and the vessel wall, meanwhile facilitating the selective passage of blood components such as signaling molecules and immune cells. Dysfunction of the vascular endothelium is implicated in a number of pathological states including atherosclerosis and hypertension, and is thought to precede atherogenesis by a number of years. Vascular endothelial growth factor A (VEGF) is a crucial mitogenic signaling molecule, not only essential for embryonic development, but also in the adult for regulating both physiological and pathological angiogenesis. Previous studies by our laboratory have demonstrated that VEGF-A activates AMP-activated protein kinase (AMPK), the downstream component of a signaling cascade important in the regulation of whole body and cellular energy status. Furthermore, studies in our laboratory have indicated that AMPK is essential for VEGF-A-stimulated vascular endothelial cell proliferation. AMPK activation typically stimulates anabolic processes and inhibits catabolic processes including cell proliferation, with the ultimate aim of redressing energy imbalance, and as such is an attractive therapeutic target for the treatment of obesity, metabolic syndromes, and type 2 diabetes. Metabolic diseases are associated with adverse cardiovascular outcomes and AMPK activation is reported to have beneficial effects on the vascular endothelium. The mechanism by which VEGF-A stimulates AMPK, and the functional consequences of VEGF-A-stimulated AMPK activation remain uncertain. The present study therefore aimed to identify the specific mechanism(s) by which VEGF-A regulates the activity of AMPK in endothelial cells, and how this might differ from the activation of AMPK by other agents. Furthermore, the role of AMPK in the pro-proliferative actions of VEGF-A was further examined. Human aortic and umbilical vein endothelial cells were therefore used as a model system to characterise the specific effect(s) of VEGF-A stimulation on AMPK activation. The present study reports that AMPK α1 containing AMPK complexes account for the vast majority of both basal and VEGF-A-stimulated AMPK activity. Furthermore, AMPK α1 is localized to the endoplasmic reticulum when sub-confluent, but translocated to the Golgi apparatus when cells are cultured to confluence. AMPK α2 appears to be associated with a structural cellular component, but neither α1 nor α2 complexes appear to translocate in response to VEGF-A stimulation. The present study confirms previous reports that when measured using the MTS cell proliferation assay, AMPK is required for VEGF-A-stimulated endothelial cell proliferation. However, parallel experiments measuring cell proliferation using the Real-Time Cell Analyzer xCELLigence system, do not agree with these previous reports, suggesting that AMPK may in fact be required for an aspect of mitochondrial metabolism which is enhanced by VEGF-A. Studies into the mitochondrial activity of endothelial cells have proved inconclusive at this time, but further studies into this are warranted. During previous studies in our laboratory, it was suggested that VEGF-A-stimulated AMPK activation may be mediated via the diacylglycerol (DAG)-sensitive transient receptor potential cation channel (TRPCs -3, -6 or -7) family of ion channels. The present study can neither confirm, nor exclude the expression of TRPCs in vascular endothelial cells, nor rule out their involvement in VEGF-A-stimulated AMPK activation; more specific investigative tools are required in order to characterise their involvement. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP)-stimulated Ca2+ release from acidic intracellular organelles is not required for AMPK activation by VEGF-A. Despite what is known about the mechanisms by which AMPK is activated, far less is known concerning the downregulation of AMPK activity, as observed in human and animal models of metabolic disease. Phosphorylation of AMPK α1 Ser485 (α2 Ser491) has recently been characterised as a mechanism by which the activity of AMPK is negatively regulated. We report here for the first time that VEGF-A stimulates AMPK α1 Ser485 phosphorylation independently of the previously reported AMPK α1 Ser485 kinases Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2). Furthermore, inhibition of protein kinase C (PKC), the activity of which is reported to be elevated in metabolic disease, attenuates VEGF-A- and phorbol 12-myristate 13-acetate (PMA)-stimulated AMPK α1 Ser485 phosphorylation, and increases basal AMPK activity. In contrast to this, PKC activation reduces AMPK activity in human vascular endothelial cells. Attempts to identify the PKC isoform responsible for inhibiting AMPK activity suggest that it is one (or more) of the Ca2+-regulated DAG-sensitive isoforms of PKC, however cross regulation of PKC isoform expression has limited the present study. Furthermore, AMPK α1 Ser485 phosphorylation was inversely correlated with human muscle insulin sensitivity. As such, enhanced AMPK α1 Ser485 phosphorylation, potentially mediated by increased PKC activation may help explain some of the reduced AMPK activity observed in metabolic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.