980 resultados para spazi Hilbert,operatori lineari,operatori autoaggiunti
Resumo:
La crescente richiesta di sicurezza negli alimenti di origine animale, inclusa la filiera lattiero casearia ha spinto gli operatori del settore a porre maggiore attenzione ad un sempre più elevato numero di batteri patogeni. Negli ultimi si è posta l’attenzione, in modo crescente, sul monitoraggio del Bacillus cereus, per il quale lo stesso Reg. 2073/2005 ha definito criteri igienici di processo nel latte in polvere. Il presente studio si è pertanto focalizzato sul monitoraggio delle caratteristiche igienico sanitarie di diverse tipologie di latte crudo (BIO, BIO Fieno, Tracciato, Alta Qualità e Alta Qualità NO OGM), includendo il controllo del Bacillus cereus. In particolare oltre alla detection ed identificazione del Bacillus cereus si sono valutati diversi parametri quali pH, cellule somatiche, Conta Batterica Totale (CBT), Enterobacteriaceae, E. coli, Staphylococchi coagulasi positivi, Salmonella e Listeria monocytogenes. I risultati ottenuti hanno confermato ottimali condizioni igieniche in tutte le tipologie di latte con una media geometrica della Carica batterica totale pari a 13553 ufc/ml valore nettamente inferiore rispetto al limite stabilito dal Reg. 853/2004). L’assenza di Salmonella in tutti i campioni testati ed una positività solo alla detection per Listeria moncytogenes in 2/46 campioni testati dimostrano ottimali garanzie di sicurezza alimentare. Relativamente alla positività per Bacillus cereus il 23.9% dei campioni analizzati sono risultati positivi (dopo conferma in PCR). In conclusione si può affermare che l’azienda fornitrice dei campioni di latte alimentare applichi buone pratiche di igiene e di processo nelle fasi antecedenti la trasformazione del latte, nel rispetto delle normative di riferimento sia in ambito igienico che di sicurezza alimentare.
Resumo:
La presente tesi intende dare un panorama e ricostruire il contesto nel quale si istaurò il Festival cinematografico Visione Italiane, realizzato nella città di Bologna dal 1994. La tesi fornisce una retrospettiva per capire le forme in cui il Festival è concepito e una decostruzione storica della sua struttura attraverso la revisione delle singole edizioni durante tutto il suo periodo di attività fino al presente. La finalità del lavoro consiste in dare un riconoscimento e una valorizzazione alle manifestazioni cinematografiche dedicate al cortometraggio, in particolare a Visioni Italiane, il quale ha un lungo percorso e costituisce di per sé un archivio di opere di esordio di autori che sono di vitale importanza per i suoi apporti alla cinematografia nazionale. Inoltre, l’elaborato cerca di fare una riflessione delle condizioni generali esistenti nell’ambito degli eventi cinematografici, schematizzando le nuove opportunità legate alle tecnologie e alle trasformazioni del pubblico e dei modi di fruizioni attuali, così come esponendo alcuni elementi che sono in crisi. Attraverso l’analisi del contesto in cui si è cimentato il Festival e la sua situazione odierna si sono evidenziati i punti di forza dell’evento, individuandolo come manifestazione chiave del cortometraggio in città, e allo stesso tempo sono emerse nel trascorso dello svolgimento della tesi degli elementi che attualmente nuocciono l’industria del cinema in Italia, e ancora più fortemente un settore come quello del corto e mediometraggio. Infine, si sono anche verificati alcuni meccanismi messi in moto dagli operatori culturali del settore e degli autori in pro del recupero della crisi, peggiorata dalla pandemia COVID-19.
Resumo:
Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.
Resumo:
In this work we prove that the Achilles-Manaresi multiplicity sequence, like the classical Hilbert-Samuel multiplicity, is additive with respect to the exact sequence of modules. We also prove the associativity formula for his mulitplicity sequence. As a consequence, we give new proofs for two results already known. First, the Achilles-Manaresi multiplicity sequence is an invariant up to reduction, a result first proved by Ciuperca. Second, I subset of J is a reduction of (J,M) if and only if c(0)(I(p), M(p)) = c(0)(J(p), M(p)) for all p is an element of Spec(A), a result first proved by Flenner and Manaresi.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
We derive a closed form expression for the sum of all the infrared divergent contributions to the free energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing noninteracting spin-two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.
Resumo:
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsa's axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
A method is presented for including path propagation effects into models of radiofrequency resonators for use in magnetic resonance imaging. The method is based on the use of Helmholtz retarded potentials and extends our previous work on current density models of resonators based on novel inverse finite Hilbert transform solutions to the requisite integral equations. Radiofrequency phase retardation effects are most pronounced at high field strengths (frequencies) as are static field perturbations due to the magnetic materials in the resonators themselves. Both of these effects are investigated and a novel resonator structure presented for use in magnetic resonance microscopy.