911 resultados para sensory drive
Resumo:
Sweet cherries (Prunus avium L.) ‘Sweetheart’ were harvested at different production regions from Portugal (Cova da Beira and Portalegre) and Spain (Valle de Jerte). Cherries were harvested at their commercial maturation according to the empirical knowledge of external color corresponding to good quality. Fruits were stored and evaluated in order to study their quality on the harvest day and during a period of 21 days, at cold storage (1 ºC, 95% RH). The sweet cherry ‘Sweetheart’ is a well-known variety and a highly appreciated one but fruits present a short shelf life. On the other hand the effect of different “terroir” on cherry characteristics should be known and clarified. Fruits from day 0, considered without storage, were kept at 20ºC and analyzed. Every weak, 3 replicas were randomly picked up and 10 fruits from each one were submitted to several analyses after fruit temperature stabilized at 20ºC. Several quality parameters were evaluated: external colour (L*, a*, b*), texture, soluble solids content (SSC), titratable acidity (TA) and the ratio between soluble solid contents (SSC) and tritratable acidity (TA). Fruits from different orchards and locations were significantly different according to these parameters. Fruits from Cova da Beira were less firm comparing with other two regions, Valle de Jerte and Portalegre, which may indicate a higher maturation rate at harvest in those fruits. This is in accordance with SSC/titratable acidity rate suggesting a late harvest in Cova da Beira comparing with other two orchards, however fruits from Cova da Beira exhibit a poor color at harvest. These results clearly showed a lower correlation between SSC and firmness considering fruits origin.
Resumo:
CONSUMERS SENSORY EVALUATION OF MELON SWEETNESS AND QUALITY Agulheiro Santos, A.C, Rato, A.E., Laranjo, M. and Gonçalves, C. Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Polo da Mitra, Ap.94, 7002-554 Évora, Portugal. ABSTRACT The sensory quality of fruits is made of a range of attributes like sweetness, acidity, aroma, firmness, color. Taste perception and perception threshold of these attributes are variable according to the psychological and cultural development of individuals. To better understand the quality evaluation of melon by consumers, consumers were invited to taste melon samples, in supermarkets in Évora (South region), Lisbon (Central region) and Vila Nova de Gaia (North region). The present work explored the importance given by consumers to sweetness in order to classify the overall quality of melon. Furthermore, the relationship of the chemical evaluation of Total Soluble Solids (TSS) with sweetness of melon was studied. Fruits from the variety Melão branco picked randomly from those that were exposed for sale in supermarkets were used for analysis. Fruits were chinned along the equatorial zone and only the central part of the fruit, opposite to the part that leaned on the soil, was used to obtain homogeneous samples. Consumers were invited to taste four small pieces of each fruit, previously referenced with a code number, and answer a questionnaire with two questions related to sweetness and overall quality. Each question had five possible levels, identified from “Nothing sweet”, to “Extremely sweet”, in one case, and from “Poor” to “Excellent” in the other. Simultaneously, the values of TSS (measured in ºBrix) for each melon used in the study were evaluated by refractometry. This sensory analysis allowed us to point out the following findings: first of all, there is good agreement between the results obtained to classify “Sweetness” and “Overall Quality” (Cohen’s Kappa=53.1%, p<0.001), which means, for example, that fruits with excellent quality are in general extremely sweet. Moreover, fruits with less than 9.6 °Brix are considered of poor quality and nothing sweet, whereas fruits with values between 10 °Brix and 12 °Brix are considered good in terms of overall quality. It seems that the thresholds for the stimulus/intensity of sweetness lied between 10 °Brix to 14 °Brix for this melon variety. Acknowledgments This work was support by national funds through Fundação para a Ciência e a Tecnologia (FCT) under the Strategic Project Pest-OE/AGR/UI0115/2014 and co-funded by FEDER funds through the COMPETE Program.
Resumo:
The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well-understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modeling of neural circuits found in the brain.
Resumo:
The most biologically-inspired artificial neurons are those of the third generation, and are termed spiking neurons, as individual pulses or spikes are the means by which stimuli are communicated. In essence, a spike is a short-term change in electrical potential and is the basis of communication between biological neurons. Unlike previous generations of artificial neurons, spiking neurons operate in the temporal domain, and exploit time as a resource in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first model of a spiking neuron; their model describes the complex electro-chemical process that enables spikes to propagate through, and hence be communicated by, spiking neurons. Since this time, improvements in experimental procedures in neurobiology, particularly with in vivo experiments, have provided an increasingly more complex understanding of biological neurons. For example, it is now well understood that the propagation of spikes between neurons requires neurotransmitter, which is typically of limited supply. When the supply is exhausted neurons become unresponsive. The morphology of neurons, number of receptor sites, amongst many other factors, means that neurons consume the supply of neurotransmitter at different rates. This in turn produces variations over time in the responsiveness of neurons, yielding various computational capabilities. Such improvements in the understanding of the biological neuron have culminated in a wide range of different neuron models, ranging from the computationally efficient to the biologically realistic. These models enable the modelling of neural circuits found in the brain. In recent years, much of the focus in neuron modelling has moved to the study of the connectivity of spiking neural networks. Spiking neural networks provide a vehicle to understand from a computational perspective, aspects of the brain’s neural circuitry. This understanding can then be used to tackle some of the historically intractable issues with artificial neurons, such as scalability and lack of variable binding. Current knowledge of feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between excitatory and inhibitory neurons is beginning to shed light on these issues, by improved understanding of the temporal processing capabilities and synchronous behaviour of biological neurons. This research topic aims to amalgamate current research aimed at tackling these phenomena.
Resumo:
The speed control system for a concept for cost effective drives with high precision is presented. The drive concept consists of two parallel working drives. The concept is an alternative to direct drives. One big advantage is the use of standard gear boxes with economical components. This paper deals with the control of the drive system consisting of two parts: one drive produces the power for the machine, another drive makes the motion precice and dynamic. Both drives are combined to one double drive by a control system. The drive system is usefull for printing machines and other machines with high power consumption at a nearly constant speed and high accuracy requirements. The calculation for a drive system with 37 kW shows, that the control drive has to supply only about 20 % of the total torque and power needed to compensate the errors of the power drive. The stability of the system is shown by a simulation of the double drive.
Resumo:
The speed control system for a concept for cost effective drives with high precision is presented. The drive concept consists of two parallel working drives. The concept is an alternative to direct drives. One big advantage is the use of standard gear boxes with economical components. This paper deals with the control of the drive system consisting of two parts: one drive produces the power for the machine, another drive makes the motion precice and dynamic. Both drives are combined to one double drive by a control system. The drive system is usefull for printing machines and other machines with high power consumption at a nearly constant speed and high accuracy requirements. The calculation for a drive system with 37 kW shows, that the control drive has to supply only about 20 % of the total torque and power needed to compensate the errors of the power drive. The stability of the system is shown by a simulation of the double drive.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
BACKGROUND: Researchers have tested the beliefs of sportspeople and sports medicine specialists that cognitive strategies influence strength performance. Few investigators have synthesised the literature. OBJECTIVES: The specific objectives were to review evidence regarding (a) the cognitive strategy-strength performance relationship; (b) participant skill level as a moderator; and (c) cognitive, motivational, biomechanical/physiological, and emotional mediators. METHOD: Studies were sourced via electronic databases, reference lists of retrieved articles, and manual searches of relevant journals. Studies had to be randomised or counterbalanced experiments with a control group or condition, repeated measures, and a quality control score above 0.5 (out of 1). Cognitive strategies included goal setting, imagery, self-talk, preparatory arousal, and free choice. Dependent variables included maximal strength, local muscular endurance, or muscular power. RESULTS: Globally, cognitive strategies were reliability associated with increased strength performance (results ranged from 61 to 65 %). Results were mixed when examining the effects of specific strategies on particular dependent variables, although no intervention had an overall negative influence. Indeterminate relationships emerged regarding hypothesised mediators (except cognitive variables) and participant skill level as a moderator. CONCLUSIONS: Although cognitive strategies influence strength performance, there are knowledge gaps regarding specific types of strength, especially muscular power. Cognitive variables, such as concentration, show promise as possible mediators.
Resumo:
Introduction: Previous research has suggested that visual images are more easily generated, more vivid and more memorable than other sensory modalities. This research examined whether or not imagery is experienced in similar ways by people with and without sight. Specifically, the imabeability of visual, auditory and tactile cue words was compared. The degree to which images were multimodal or unimodal was also examined. Method: Twelve participants totally blind from early infancy and 12 sighted participants generated images in response to 53 sensory and non sensory words, rating imageability and the sensory modality, and describing images. From these 53 items, 4 subgroups of words, which stimulated images that were predominantly visual, tactile, auditory and low-imagery, respectively, were created. Results: T-tests comparing imageability ratings from blind and sighted participants found no differences for auditory and tactile words (both p>.1). Nevertheless, whilst participants without sight found auditory and tactile images equally imageable, sighted participants found images in response to tactile cue words harder to generate than visual cue words (mean difference: -0.51, p=.025). Participants with sight were also more likely to develop multisensory images than were participants without sight (both U≥15.0, N1=12, N2=12, p≤.008). Discussion: For both the blind and sighted, auditory and tactile images were rich and varied and similar language was used. Sighted participants were more likely to generate multimodal images. This was particularly the case for tactile words. Nevertheless, cue words that resulted in multisensory images were not necessarily rated as more imageable. The discussion considers whether or not multimodal imagery represent a method of compensating for impoverished unimodal imagery. Implications for Practitioners: Imagery is important not only as a mnemonic in memory rehabilitation, but also everyday uses for things such as autobiographical memory. This research emphasises both the importance of not only auditory and tactile sensory imagery, but also spatial imagery for people without sight.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.
Resumo:
Double degree. A Work Project presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA- School of Business and Economics and Warsaw School of Economics
Resumo:
Nas últimas décadas, as ciências sociais e humanas têm despertado para a acção modeladora das estruturas sobre a percepção humana. O debate académico sobre o relativismo cultural dos modelos de percepção tem levado investigadores das várias áreas a debruçarem-se sobre o estudo dos sentidos. Correntes disciplinares como a antropologia ou história dos sentidos vêm sintetizando a dimensão estrutural e fenomenológica, a partir da compreensão do carácter biológico e cultural da experiência sensorial. Nesse sentido, tem emergido uma nova história da arte que contraria as últimas décadas de predomínio da linguística e semiótica, em função da compreensão da performance das imagens ligada à percepção sensorial. Questiona-se o totalitarismo que o método iconográfico/iconológico de Panofsky tem encontrado na historiografia da arte, a partir da ideia de que as imagens antes de um significado são uma acção, antes de uma função são um uso.
Resumo:
The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.