922 resultados para semigroups of bounded linear operators
Resumo:
Caesium titanium alum, CsTi(SO4)(2) . 12H(2)O, is a beta alum and exhibits a large trigonal field and a dynamic Jahn-Teller effect. Exact calculations of the linear (2)T(2)xe Jahn-Teller coupling show that in the strict S-6 Site symmetry the ground multiplet consists of a Kramers doublet 2 Gamma(6) with magnetic splitting factors g(parallel to)=1.1 and g perpendicular to=0, a Gamma(4) Gamma(5) doublet at similar to 60 cm(-1) with g(parallel to)=2.51 and g(perpendicular to)=0.06 and another Gamma(4) Gamma(5) doublet at similar to 270 cm(-1) with g(parallel to)=1.67 and g(perpendicular to)=1.83. The controversial g values observed below 4.2 K, g(parallel to)=1.25 and g(perpendicular to)=1.14, are shown to arise from low symmetry distortions. These distortions couple the vibronic levels and induce into the ground state the off-diagonal axial Zeeman interaction that exists between the first excited and the ground vibronic levels. (C) 1997 American Institute of Physics.
Resumo:
alpha-Aspartyl-containing cyclic pentapeptides were synthesised in high yields using a strategy that maintained fluorenylmethyl protection on the aspartic acid side chain during chain assembly, resin cleavage and cyclisation of the linear precursors. Tetra-n-butylammonium fluoride treatment of the fluorenylmethyl-protected cyclic peptides catalysed imide formation, whereas piperidine-induced deprotection resulted in good yields of the target cyclic peptides.
Resumo:
Background: Attention deficit hyperactivity disorder (ADHD) is a clinically significant disorder in adulthood, but current diagnostic criteria and instruments do not seem to adequately capture the complexity of the disorder in this developmental phase. Accordingly, there are limited data on the proportion of adults affected by the disorder, specially in developing countries. Method: We assessed a representative household sample of the Brazilian population for ADHD with the Adult ADHD Self-report Scale (ASRS) Screener, and evaluated the instrument according to the Rasch model of item response theory. Results: The sample was comprised by 3007 individuals, and the overal prevalence of positive screeners for ADHD was 5.8% [95% confidence interval (CI), 4.8-7.0]. Rasch analyses revealed the misfitt of the overall sample to expectations of the model. The evaluation of the sample stratified by age revealed that data for adolescents showed a signficant fittnes to the model expectations, while items completed by adults were not adequated. Conclusions: The lack of fitness to the model for adult respondents challenges the possibility of a linear transformation of the ordinal data into interval measures and the utilization of parametric analyses of data. This result suggests that diagnostic criteria and instruments for adult ADHD must take into account a developmental perspective. Moreover, it calls for further evaluation of currently employed research methods in light of modern theories of psychometrics. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Purpose: The aim of this research was to assess the dimensional accuracy of orbital prostheses based on reversed images generated by computer-aided design/computer-assisted manufacturing (CAD/CAM) using computed tomography (CT) scans. Materials and Methods: CT scans of the faces of 15 adults, men and women older than 25 years of age not bearing any congenital or acquired craniofacial defects, were processed using CAD software to produce 30 reversed three-dimensional models of the orbital region. These models were then processed using the CAM system by means of selective laser sintering to generate surface prototypes of the volunteers` orbital regions. Two moulage impressions of the faces of each volunteer were taken to manufacture 15 pairs of casts. Orbital defects were created on the right or left side of each cast. The surface prototypes were adapted to the casts and then flasked to fabricate silicone prostheses. The establishment of anthropometric landmarks on the orbital region and facial midline allowed for the data collection of 31 linear measurements, used to assess the dimensional accuracy of the orbital prostheses and their location on the face. Results: The comparative analyses of the linear measurements taken from the orbital prostheses and the opposite sides that originated the surface prototypes demonstrated that the orbital prostheses presented similar vertical, transversal, and oblique dimensions, as well as similar depth. There was no transverse or oblique displacement of the prostheses. Conclusion: From a clinical perspective, the small differences observed after analyzing all 31 linear measurements did not indicate facial asymmetry. The dimensional accuracy of the orbital prostheses suggested that the CAD/CAM system assessed herein may be applicable for clinical purposes. Int J Prosthodont 2010;23:271-276.
Resumo:
Introduction: The maxillary anterior teeth are the most important to facial esthetics because they are the first to show on a smile. Therefore, stability of the maxillary anterior teeth alignment is an important issue. The objective of this study was to compare the stability of maxillary anterior tooth alignment in Class I and Class II Division 1 malocclusions. Methods: The sample comprised dental casts of 70 patients with Class I and Class II Division 1 malocclusions and a minimum of 3 mm of maxillary anterior crowding measured by an irregularity index. The patients were treated with extractions and evaluated at pretreatment and posttreatment and at least 5 years after treatment. The sample was divided into 3 groups: group 1, Class I malocclusion treated with 4 first premolar extractions comprising 30 subjects, with an initial age of 13.16 years and 8.59 mm of initial maxillary irregularity; group 2, Class II malocclusion treated with 4 first premolar extractions comprising 20 subjects, with an initial age of 12.95 years and 11.10 mm of maxillary irregularity; and group 3, Class II malocclusion treated with 2 first maxillary premolar extractions comprising 20 subjects, with an initial age of 13.09 years and 9.68 mm of maxillary irregularity. Results: The decrease in the maxillary irregularity index was significantly greater in group 2 than in group 1 during treatment. The stability of maxillary anterior alignment was 88.12% over the long term; 77% of the linear displacement of the anatomic contact points tended to return to their original positions. Conclusions: Stability of maxillary anterior alignment between the 3 groups was similar. The stability of maxillary anterior alignment was high over the long term, but a high percentage of teeth tended to return to their original positions. (Am J Orthod Dentofacial Orthop 2011; 139: 768-74)
Resumo:
The continuous parametric pumping of a superconducting lossy QED cavity supporting a field prepared initially as a superposition of coherent states is discussed. In contrast to classical pumping, we verify that the phase sensitivity of the parametric pumping makes the asymptotic behaviour of the cavity field state strongly dependent on the phase theta of the coherent state \ alpha > = \ alpha \e(i theta)>. Here we consider theta = pi /4, -pi /4 and we analyse the evolution of the purity of the superposition states with the help of the linear entropy and fidelity functions. We also analyse the decoherence process quantitatively through the Wigner function, for both states, verifying that the decay is slightly modified when compared to the free decoherence case: for theta = -pi /4 the process is accelerated while for theta = pi /4 it is delayed.
Resumo:
A grazing trial to study the effect of stocking rate on animal production and botanical composition of Gallon panic (Panicum maximum) and Estrella grass (Cynodon nlemfuensis) was conducted in the central region of the Paraguayan Chaco between 1992 and 1998. The experiment included 6 stocking rates (0.5, 0.8. 1.1, 1.4. 1.7 and 2.0 AU/ha) on individual 4-ha paddocks. The pasture treatments were continuously grazed by yearling steers. replaced annually, over a 4-year grazing period. No fertiliser was used. Botanical composition was recorded annually in autumn from 1992 to 1998 while animal production data were recorded monthly from 1992 to 1996. Relationships between animal productivity and stocking rates were determined by regression analysis. Gallon panic produced greater liveweight gains per head than Estrella grass at low and intermediate stocking rates. However, the slope of the linear relationship between liveweight gain per head and stocking rate increased each year in Gallon panic indicating that the productivity of this grass progressively declined at higher stocking rates over the period of observation. Estrella grass showed less sensitivity to stocking rate but was affected severely by periods of low rainfall.
Resumo:
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the quantum inverse scattering method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.
Resumo:
A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-parameter operators and the associated Poincare sphere, which describe the quantum-optical polarization properties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller than the coherent-state value. The main object of the paper is the application of these concepts to bright squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac interferometer provides an efficient method for the generation of bright nonclassical polarization states. The important advantage of these nonclassical polarization states for quantum communication is the possibility of experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using only linear optical elements followed by direct detection.
Resumo:
The present study investigated how demographic, personality, and climate variables act to predict departmental theft. Participants in the current field survey were 153 employees from 17 departments across two stores. The results of confirmatory factor analyses supported the construct validity of the Big Five Inventory (John, Donahue, & Kentle, 1991) and the Occupational Climate Questionnaire (Furnham & Gunter, 1997) in UK work settings. The results of regression analysis indicate that the variability in departmental theft is accountable in terms of a linear combination of demographic, personality, and climate factors. We concluded that an expanded theoretical perspective (utilizing demographic, personality, and climate variables) explained more variance than might otherwise be expected from any single perspective. Indeed, climate, personality, and demographic variables operated legitimately at the departmental level. Finally, we explained aggregated personality as a form of social interaction which is the by-product of individual differences.
Resumo:
The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.
Resumo:
A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A fast and direct surface plasmon resonance (SPR) method for the kinetic analysis of the interactions between peptide antigens and immobilised monoclonal antibodies (mAb) has been established. Protocols have been developed to overcome the problems posed by the small size of the analytes (< 1600 Da). The interactions were well described by a simple 1:1 bimolecular interaction and the rate constants were self-consistent and reproducible. The key features for the accuracy of the kinetic constants measured were high buffer flow rates, medium antibody surface densities and high peptide concentrations. The method was applied to an extensive analysis of over 40 peptide analogues towards two distinct anti-FMDV antibodies, providing data in total agreement with previous competition ELISA experiments. Eleven linear 15-residue synthetic peptides, reproducing all possible combinations of the four replacements found in foot-and-mouth disease virus (FMDV) field isolate C-S30, were evaluated. The direct kinetic SPR analysis of the interactions between these peptides and three anti-site A mAbs suggested additivity in all combinations of the four relevant mutations, which was confirmed by parallel ELISA analysis. The four-point mutant peptide (A15S30) reproducing site A from the C-S30 strain was the least antigenic of the set, in disagreement with previously reported studies with the virus isolate. Increasing peptide size from 15 to 21 residues did not significantly improve antigenicity. Overnight incubation of A15S30 with mAb 4C4 in solution showed a marked increase in peptide antigenicity not observed for other peptide analogues, suggesting that conformational rearrangement could lead to a stable peptide-antibody complex. In fact, peptide cyclization clearly improved antigenicity, confirming an antigenic reversion in a multiply substituted peptide. Solution NMR studies of both linear and cyclic versions of the antigenic loop of FMDV C-S30 showed that structural features previously correlated with antigenicity were more pronounced in the cyclic peptide. Twenty-six synthetic peptides, corresponding to all possible combinations of five single-point antigenicity-enhancing replacements in the GH loop of FMDV C-S8c1, were also studied. SPR kinetic screening of these peptides was not possible due to problems mainly related to the high mAb affinities displayed by these synthetic antigens. Solution affinity SPR analysis was employed and affinities displayed were generally comparable to or even higher than those corresponding to the C-S8c1 reference peptide A15. The NMR characterisation of one of these multiple mutants in solution showed that it had a conformational behaviour quite similar to that of the native sequence A15 and the X-ray diffraction crystallographic analysis of the peptide ? mAb 4C4 complex showed paratope ? epitope interactions identical to all FMDV peptide ? mAb complexes studied so far. Key residues for these interactions are those directly involved in epitope ? paratope contacts (141Arg, 143Asp, 146His) as well as residues able to stabilise a particular peptide global folding. A quasi-cyclic conformation is held up by a hydrophobic cavity defined by residues 138, 144 and 147 and by other key intrapeptide hydrogen bonds, delineating an open turn at positions 141, 142 and 143 (corresponding to the Arg-Gly-Asp motif).