375 resultados para seagrass


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds and represents the largest reservoirs of carbon (C) on earth. Particulate organic matter (POM) is another important carbon component in C cycling and controls a variety of biogeochemical processes. Estuaries, as important interfaces between land and ocean, play important roles in retaining and transforming such organic matter (OM) and serve as both sources and sinks of DOM and POM. There is a diverse array of both autochthonous and allochthonous OM sources in wetland/estuarine ecosystems. A comprehensive study on the sources, transformation and fate of OM in such ecosystems is essential in advancing our understanding of C cycling and better constraining the global C budget. In this work, DOM characteristics were investigated in different estuaries. Dissolved organic matter source strengths and dynamics were assessed in a seagrass-dominated subtropical estuarine lagoon. DOM dynamics controlled by hydrology and seagrass primary productivity were confirmed, and the primary source of DOM was quantified using the combination of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and stable C isotope analysis. Seagrass can contribute up to 72% of the DOM in the study area. The spatial and temporal variation of DOM dynamics was also studied in a freshwated dominated estuary fringed with extensive salt marshes. The data showed that DOM was primarily derived from freshwater marshes and controlled by hydrology while salt marsh plants play a significant role in structuring the distribution patterns of DOM quality and quantity. The OM dynamics was also investigated in a mangrove-dominate estuary and a comparative study was conducted between the DOM and POM pools. The results revealed both similarity and dissimilarity in DOM and POM composition. The dynamics of both OM pools are largely uncoupled as a result of source differences. Fringe mangrove swamps are suggested to export similar amounts of DOM and POM and should be considered as an important source in coastal C budgets. Lastly, chemical characterizations were conducted on the featured fluorescence component in OM in an attempt to better understand the composition and origins of the specific PARAFAC component. The traditionally defined ‘protein-like’ fluorescence was found to contain both proteinaceous and phenolic compounds, suggesting that the application of this parameter as a proxy for amino acid content and bioavailability may be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, ä15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM ä15N values ranged on a quarterly basis by 7‰, while ä13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO2 world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southeastern coast of South Australia contains a spectacular and world-renown suite of Quaternary calcareous aeolianites. This study is focused on the provenance of components in the Holocene sector of this carbonate breach-dune succession. Research was carried out along seven transects from ~30 meters water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Otway coasts in particular are mostly composed of modern invertebrate and calcareous algal allochems. The most numerous grains are from molluscs, benthic foraminifera, coralline algae, echinoids, and bryozoans. These particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows, and low-relief seafloor rockgrounds. The incorporation of carbonate skeletons into coastal dunes, however, depends on a combination of; 1) the infauna within intertidal and nearshore environments, 2) the physical characteristics of different allochems and their ability to withstand fragmentation and abrasion, 3) the wave and swell climate, and 4) the nature of aeolian transport. Most aeolian dune sediment is derived from nearshore and intertidal carbonate factories. This is particularly well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in water depths > 10mwd. Thus, the calcareous aeolianites in this cool-water carbonate region are not a reflection of the offshore marine shelf factories, but more a product of shallow nearshore-intertidal biomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new protocol established by Auby et al. (2012) was applied in 2014 to the seagrass monitoring in the Water body FRFT8 – Bidassoa - Type T03. Based on 3 metrics ("taxonomy", "extension" and "abundance"), the quality index of this water body for the angiosperm indicator, was "good". The displacement of the seagrass bed led us to adapt the sampling grid in 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mollusks present a great taxon variety and life habits in coral reefs being good environmental indicators. It is important to know the distribution pattern of the mollusks and the processes that influence it, so that disturbances in sea ecosystems could be monitored. The present study aims to accomplish the inventory and distribution of epibenthic mollusks in the Parracho of Maracajaú. 23 sites in different habitats of the Parracho were settled: 11 in the reef habitat, 3 in the sandy bottom and 9 in the seagrass bed. Qualitative and quantitative samplings have been done through snorkeling and scuba diving. Three band transects (10m²) were sampled in each site and the data were obtained to each m² of the transect, where the species were counted and the environmental variables (rugosity and recovery of the substratum) were valued. The data were submitted to multivariate analyses in order to find possible distribution patterns that could be associated to the substratum variables. The diversity indexes were calculated for each reef sites and compared with each other. A number of 46 species were registered. The reef habit at should to be the richnest area while the sandy bottom was poorest one. In the reef habitat, the mollusks were associated to rugosity and recovering of frondose algae and zoanthids, while for the seagrass bed, the animals exhibited a richness variation associated to the muddy and sandy sediment. There were found 3 species economically explored, what requires an appropriate management for the maintenance and conservation of the area resources in a sustainable way

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification poses a serious threat to a broad suite of calcifying organisms. Scleractinian corals and cal- careous algae that occupy shallow, tropical waters are vulnerable to global changes in ocean chemistry be- cause they already are subject to stressful and variable carbon dynamics at the local scale. For example, net heterotrophy increases carbon dioxide concentrations, and pH varies with diurnal fluctuations in photosyn- thesis and respiration. Few researchers, however, have investigated the possibility that carbon dioxide con- sumption during photosynthesis by non-calcifying photoautotrophs, such as seagrasses, can ameliorate deleterious effects of ocean acidi fi cation on sympatric calcareous algae. Naturally occurring variations in the density of seagrasses and associated calcareous algae provide an ecologically relevant test of the hypoth- esis that diel fl uctuations in water chemistry driven by cycles of photosynthesis and respiration within seagrass beds create microenvironments that enhance macroalgal calci fi cation. In Grape Tree Bay off Little Cayman Island BWI, we quanti fi ed net production and characterized calci fi cation for thalli of the calcareous green alga Halimeda incrassata growing within beds of Thalassia testudinum with varying shoot densities. Re- sults indicated that individual H . incrassata thalli were ~6% more calci fi ed in dense seagrass beds. On an areal basis, however, far more calcium carbonate was produced by H . incrassata in areas where seagrasses were less dense due to higher rates of production. In addition, diel pH regimes in vegetated and unvegetated areas within the lagoon were not signi fi cantly different, suggesting a high degree of water exchange and mixing throughout the lagoon. These results suggest that, especially in well-mixed lagoons, carbonate pro- duction by calcareous algae may be more related to biotic interactions between seagrasses and calcareous algae than to seagrass-mediated changes in local water chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The species Dasyatis marianae inhabits coastal areas associated with coral reefs, considered endemic to the northeast of Brazil, occurring from the State of Maranhão to the south of Bahia. Specimens of this species are commonly sighted by divers and fishermen in the area of Maracajaú reefs, a complex reef that is part of the Environmental Protection Area of Coral Reefs (EPACR), which was developed in this study about the ecology and biology of the D. marianae, in order to characterize aspects of population structure in the area of the reef complex of Parracho de Maracajaú. We analyzed 120 specimens caught by artisanal fishing site of the size, weight, sex, stage of maturity and stomach contents. Most subjects were adult males (1.7:1) and was more abundant for rays with lengths between 25 and 29cm of LD, where females reach larger sizes, a feature common to other rays. The largest specimens were captured in the area of seagrass, which is preferred for the species. The distribution of species in the area showed an ontogenetic and sexual segregation, where the youthful occur near the beach, which is a likely area for nursery and growth of the adult females prevail in the seagrass, which apparently has a high prey availability, and Adult males are more distant, a higher proportion occurring in outlying areas, suggesting a habit more exploratory than the females. The evaluation of the reproductive system indicated 3 reproductive cycles per year, one young per pregnancy, and showed that the mature males were smaller than females. The cubs of D. marianae size at birth 12 to 15cm LD. As for diet, the species was characterized as carnivorous crustacean specialist. The performance of visual censuses in different localities allowed to evaluate the density of D. marianae in different environments of the complex. The species occurs in greater numbers in seagrass, environment very important for the conservation of the species. 100 individuals of D. marianae marked in reef complex area enrolled in a recapture rate of 3%. Some behavioral aspects were evaluated, as diurnal pattern of activity, interaction with cleaning and fish Pomacanthus paru followers as Lutjanus analis and Carangoides bartholomaei. Overall, much of the information obtained should be used for management of the species