864 resultados para real genetic algorithm
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.
Resumo:
The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.
Resumo:
An important aspect of tropical medicine is analysis of geographic aspects of risk of disease transmission, which for lack of detailed public health data must often be reduced to an understanding of the distributions of critical species such as vectors and reservoirs. We examine the applicability of a new technique, ecological niche modeling, to the challenge of understanding distributions of such species based on municipalities in the state of São Paulo in which a group of 5 Lutzomyia sandfly species have been recorded. The technique, when tested based on independent occurrence data, yielded highly significant predictions of species' distributions; minimum sample sizes for effective predictions were around 40 municipalities.
Resumo:
Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
In this paper we explore the effect of bounded rationality on the convergence of individual behavior toward equilibrium. In the context of a Cournot game with a unique and symmetric Nash equilibrium, firms are modeled as adaptive economic agents through a genetic algorithm. Computational experiments show that (1) there is remarkable heterogeneity across identical but boundedly rational agents; (2) such individual heterogeneity is not simply a consequence of the random elements contained in the genetic algorithm; (3) the more rational agents are in terms of memory abilities and pre-play evaluation of strategies, the less heterogeneous they are in their actions. At the limit case of full rationality, the outcome converges to the standard result of uniform individual behavior.
Resumo:
L’èxit del Projecte Genoma Humà (PGH) l’any 2000 va fer de la “medicina personalitzada” una realitat més propera. Els descobriments del PGH han simplificat les tècniques de seqüenciació de tal manera que actualment qualsevol persona pot aconseguir la seva seqüència d’ADN complerta. La tecnologia de Read Mapping destaca en aquest tipus de tècniques i es caracteritza per manegar una gran quantitat de dades. Hadoop, el framework d’Apache per aplicacions intensives de dades sota el paradigma Map Reduce, resulta un aliat perfecte per aquest tipus de tecnologia i ha sigut l’opció escollida per a realitzar aquest projecte. Durant tot el treball es realitza l’estudi, l’anàlisi i les experimentacions necessàries per aconseguir un Algorisme Genètic innovador que utilitzi tot el potencial de Hadoop.
Resumo:
Literature from 1928 through 2004 was compiled from different document sources published in Mexico or elsewhere. From these 907 publications, we found 19 different topics of Chagas disease study in Mexico. The publications were arranged by decade and also by state. This information was used to construct maps describing the distribution of Chagas disease according to different criteria: the disease, vectors, reservoirs, and strains. One of the major problems confronting study of this zoonotic disease is the great biodiversity of the vector species; there are 30 different species, with at least 10 playing a major role in human infection. The high variability of climates and biogeographic regions further complicate study and understanding of the dynamics of this disease in each region of the country. We used a desktop Genetic Algorithm for Rule-Set Prediction procedure to provide ecological models of organism niches, offering improved flexibility for choosing predictive environmental and ecological data. This approach may help to identify regions at risk of disease, plan vector-control programs, and explore parasitic reservoir association. With this collected information, we have constructed a data base: CHAGMEX, available online in html format.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.