973 resultados para reactive attachment disorder
Resumo:
Tricyclic antidepressants have notable cardiac side effects, and this issue has become important due to the recent reports of increased cardiovascular mortality in patients with depression and anxiety. Several previous studies indicate that serotonin reuptake inhibitors (SRIs) do not appear to have such adverse effects. Apart from the effects of these drugs on routine 12-lead ECG, the effects on beat-to-beat heart rate (HR) and QT interval time series provide more information on the side effects related to cardiac autonomic function. In this study, we evaluated the effects of two antidepressants, nortriptyline (n = 13), a tricyclic, and paroxetine (n = 16), an SRI inhibitor, on HR variability in patients with panic disorder, using a measure of chaos, the largest Lyapunov exponent (LLE) using pre- and posttreatment HR time series. Our results show that nortriptyline is associated with a decrease in LLE of high frequency (HF: 0.15-0.5 Hz) filtered series, which is most likely due to its anticholinergic effect, while paroxetine had no such effect. Paroxetine significantly decreased sympathovagal ratios as measured by a decrease in LLE of LF/HF. These results suggest that paroxetine appears to be safer in regards to cardiovascular effects compared to nortriptyline in this group of patients. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Interdiffusion study is conducted in the V-Si system to determine integrated diffusion coefficients of the phases. Activation energy values are calculated from the experiments conducted at different temperatures. The average values are found to be 208, 240 and 141 kJ/mol, respectively, for the V(3)Si, V(5)Si(3) and VSi(2) phases. The low activation energy for the VSi(2) phase indicates very high concentration of defects or the significant contribution from the grain boundary diffusion. The error in calculation of diffusion parameters from a very thin phase layer in a multiphase diffusion couple is discussed. Further the data available in the literature in this system is compared and the problems in the indirect methodology followed previously to calculate the diffusion parameters are discussed.
Resumo:
The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single ``do-it-all'' technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-mu s) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
For some new applications of metals in functional devices, metals of high purity are required. In recent years, many high-purity metals have been produced commercially for use in electronics, but the demand for ultra-high-purity metals is increasing rapidly because of more stringent specifications for materials used in high-performance information devices.
Resumo:
Deviation from local equilibrium between Fe–Ni alloy and (Fe,Ni)TiO3 solid solution in the reaction–diffusion zone of the Fe–NiTiO3 couple at 1273 K is evaluated by comparing the measured compositions in the zone with experimentally determined equilibrium tie-lines. The deviation is quantified by computing the Gibbs energy change for the reaction, Fe + NiTiO3 → FeTiO3 + Ni, from measured compositions in the zone and activity data available in the literature. Except near the extremities of the zone, the computed Gibbs energy change is constant, 8.2 kJ mol−1 higher than the standard Gibbs energy change for the reaction.
Resumo:
We present a systematic study to explore the effect of important process variables on the composition and structure of niobium nitride thin films synthesized by Reactive Pulsed Laser Deposition (RPLD) technique through ablation of high purity niobium target in the presence of low pressure nitrogen gas. Secondary Ion Mass Spectrometry has been used in a unique way to study and fix gas pressure, substrate temperature and laser fluence, in order to obtain optimized conditions for one variable in single experimental run. The x-ray diffraction and electron microscopic characterization have been complemented by proton elastic backscattering spectroscopy and x-ray photoelectron spectroscopy to understand the incorporation of oxygen and associated non-stoichiometry in the metal to nitrogen ratio. The present study demonstrates that RPLD can be used for obtaining thin film architectures using non-equilibrium processing. Finally the optimized NbN thin films were characterized for their hardness using nano-indentation technique and found to be similar to 30 GPa at the deposition pressure of 8 Pa. (C) 2011 Elsevier B.V. All rights reserved.
A Novel VSI- and CSI-Fed Active-Reactive Induction Motor Drive with Sinusoidal Voltages and Currents
Resumo:
Till date load-commutated inverter (LCI)-fed synchronous motor drive configuration is popular in high power applications (>10 MW). The leading power factor operation of synchronous motor by excitation control offers this simple and rugged drive structure. On the contrary, LCI-fed induction motor drive is absent as it always draws lagging power factor current. Therefore, complicated commutation circuit is required to switch off thyristors for a current source inverter (CSI)-driven induction motor. It poses the major hindrance to scale up the power rating of CSI-fed induction motor drive. Anew power topology for LCI-fed induction motor drive for medium-voltage drive application is proposed. A new induction machine (active-reactive induction machine) with two sets of three-phase winding is introduced as a drive motor. The proposed power configuration ensures sinusoidal voltage and current at the motor terminals. The total drive power is shared among a thyristor-based LCI, an insulated gate bipolar transistor (IGBT)-based two-level voltage source inverter (VSI), and a three-level VSI. The benefits of SCRs and IGBTs are explored in the proposed drive. Experimental results from a prototype drive verify the basic concepts of the drive.
Resumo:
The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.