863 resultados para random regression model
Resumo:
This paper explains how Poisson regression can be used in studies in which the dependent variable describes the number of occurrences of some rare event such as suicide. After pointing out why ordinary linear regression is inappropriate for treating dependent variables of this sort, we go on to present the basic Poisson regression model and show how it fits in the broad class of generalized linear models. Then we turn to discussing a major problem of Poisson regression known as overdispersion and suggest possible solutions, including the correction of standard errors and negative binomial regression. The paper ends with a detailed empirical example, drawn from our own research on suicide.
Resumo:
The dissertation takes a multivariate approach to answer the question of how applicant age, after controlling for other variables, affects employment success in a public organization. In addition to applicant age, there are five other categories of variables examined: organization/applicant variables describing the relationship of the applicant to the organization; organization/position variables describing the target position as it relates to the organization; episodic variables such as applicant age relative to the ages of competing applicants; economic variables relating to the salary needs of older applicants; and cognitive variables that may affect the decision maker's evaluation of the applicant. ^ An exploratory phase of research employs archival data from approximately 500 decisions made in the past three years to hire or promote applicants for positions in one public health administration organization. A logit regression model is employed to examine the probability that the variables modify the effect of applicant age on employment success. A confirmatory phase of the dissertation is a controlled experiment in which hiring decision makers from the same public organization perform a simulated hiring decision exercise to evaluate hypothetical applicants of similar qualifications but of different ages. The responses of the decision makers to a series of bipolar adjective scales add support to the cognitive component of the theoretical model of the hiring decision. A final section contains information gathered from interviews with key informants. ^ Applicant age has tended to have a curvilinear relationship with employment success. For some positions, the mean age of the applicants most likely to succeed varies with the values of the five groups of moderating variables. The research contributes not only to the practice of public personnel administration, but is useful in examining larger public policy issues associated with an aging workforce. ^
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
Introduction : Le diabète de type 2 est une maladie évolutive débilitante et souvent mortelle qui atteint de plus en plus de personnes dans le monde. Le traitement antidiabétique non-insulinique (TADNI) notamment le traitement antidiabétique oral (TADO) est le plus fréquemment utilisé chez les adultes atteints de cette maladie. Toutefois, plusieurs de ces personnes ne prennent pas leur TADO tel que prescrit posant ainsi la problématique d’une adhésion sous-optimale. Ceci entraîne des conséquences néfastes aussi bien pour les patients que pour la société dans laquelle ils vivent. Il serait donc pertinent d’identifier des pistes de solution à cette problématique. Objectifs : Trois objectifs de recherche ont été étudiés : 1) Explorer la capacité de la théorie du comportement planifié (TCP) à prédire l’adhésion future au TADNI chez les adultes atteints de diabète de type 2, 2) Évaluer l’efficacité globale des interventions visant à améliorer l’adhésion au TADO chez les adultes atteints de diabète de type 2 et étudier l’influence des techniques de changement de comportement sur cette efficacité globale, et 3) Évaluer l’efficacité globale de l’entretien motivationnel sur l’adhésion au traitement médicamenteux chez les adultes atteints de maladie chronique et étudier l’influence des caractéristiques de cette intervention sur son efficacité globale. Méthodes : Pour l’objectif 1 : Il s’agissait d’une enquête web, suivie d’une évaluation de l’adhésion au TADNI sur une période de 30 jours, chez des adultes atteints de diabète de type 2, membres de Diabète Québec. L’enquête consistait à la complétion d’un questionnaire auto-administré incluant les variables de la TCP (intention, contrôle comportemental perçu et attitude) ainsi que d’autres variables dites «externes». Les informations relatives au calcul de l’adhésion provenaient des dossiers de pharmacie des participants transmis via la plateforme ReMed. Une régression linéaire multivariée a été utilisée pour estimer la mesure d’association entre l’intention et l’adhésion future au TADNI ainsi que l’interaction entre l’adhésion passée et l’intention. Pour répondre aux objectifs 2 et 3, deux revues systématiques et méta-analyses ont été effectuées et rapportées selon les lignes directrices de PRISMA. Un modèle à effets aléatoires a été utilisé pour estimer l’efficacité globale (g d’Hedges) des interventions et son intervalle de confiance à 95 % (IC95%) dans chacune des revues. Nous avons également quantifié l’hétérogénéité (I2 d’Higgins) entre les études, et avons fait des analyses de sous-groupe et des analyses de sensibilité. Résultats : Objectif 1 : Il y avait une interaction statistiquement significative entre l’adhésion passée et l’intention (valeur-p= 0,03). L’intention n’était pas statistiquement associée à l’adhésion future au TADNI, mais son effet était plus fort chez les non-adhérents que chez les adhérents avant l’enquête web. En revanche, l’intention était principalement prédite par le contrôle comportemental perçu à la fois chez les adhérents [β= 0,90, IC95%= (0,80; 1,00)] et chez les non-adhérents passés [β= 0,76, IC95%= (0,56; 0,97)]. Objectif 2 : L’efficacité globale des interventions sur l’adhésion au TADO était de 0,21 [IC95%= (-0,05; 0,47); I2= 82 %]. L’efficacité globale des interventions dans lesquelles les intervenants aidaient les patients et/ou les cliniciens à être proactifs dans la gestion des effets indésirables était de 0,64 [IC95%= (0,31; 0,96); I2= 56 %]. Objectif 3 : L’efficacité globale des interventions (basées sur l’entretien motivationnel) sur l’adhésion au traitement médicamenteux était de 0,12 [IC95%= (0,05; 0,20); I2= 1 %. Les interventions basées uniquement sur l’entretien motivationnel [β= 0,18, IC95%= (0,00; 0,36)] et celles dans lesquelles les intervenants ont été coachés [β= 0,47, IC95%= (0,03; 0,90)] étaient les plus efficaces. Aussi, les interventions administrées en face-à-face étaient plus efficaces que celles administrées par téléphone [β= 0,27, IC95%=(0,04; 0,50)]. Conclusion : Il existe un écart entre l’intention et l’adhésion future au TADNI, qui est partiellement expliqué par le niveau d’adhésion passée. Toutefois, il n’y avait pas assez de puissance statistique pour démontrer une association statistiquement significative entre l’intention et l’adhésion future chez les non-adhérents passés. D’un autre côté, quelques solutions au problème de l’adhésion sous-optimale au TADO ont été identifiées. En effet, le fait d’aider les patients et/ou les cliniciens à être proactifs dans la gestion des effets indésirables contribue efficacement à l’amélioration de l’adhésion au TADO chez les adultes atteints de diabète de type 2. Aussi, les interventions basées sur l’entretien motivationnel améliorent efficacement l’adhésion au traitement médicamenteux chez les adultes atteints de maladie chronique. L’entretien motivationnel pourrait donc être utilisé comme un outil clinique pour soutenir les patients dans l’autogestion de leur TADO.
Resumo:
This work aims to investigate the relationship between the entrepreneurship and the incidence of bureaucratic corruption in the states of Brazil and Federal District. The main hypothesis of this study is that the opening of a business in Brazilian states is negatively affected by the incidence of corruption. The theoretical reference is divided into Entrepreneurship and bureaucratic corruption, with an emphasis on materialistic perspective (objectivist) of entrepreneurship and the effects of bureaucratic corruption on entrepreneurial activity. By the regression method with panel data, we estimated the models with pooled data and fixed and random effects. To measure corruption, I used the General Index of Corruption for the Brazilian states (BOLL, 2010), and to represent entrepreneurship, firm entry per capita by state. Tests (Chow, Hausman and Breusch-Pagan) indicate that the random effects model is more appropriate, and the preliminary results indicate a positive impact of bureaucratic corruption on entrepreneurial activity, contradicting the hypothesis expected and found in previous articles to Brazil, and corroborating the proposition of Dreher and Gassebner (2011) that, in countries with high regulation, bureaucratic corruption can be grease in the wheels of entrepreneurship
Resumo:
Ce mémoire s’intéresse à l’étude du critère de validation croisée pour le choix des modèles relatifs aux petits domaines. L’étude est limitée aux modèles de petits domaines au niveau des unités. Le modèle de base des petits domaines est introduit par Battese, Harter et Fuller en 1988. C’est un modèle de régression linéaire mixte avec une ordonnée à l’origine aléatoire. Il se compose d’un certain nombre de paramètres : le paramètre β de la partie fixe, la composante aléatoire et les variances relatives à l’erreur résiduelle. Le modèle de Battese et al. est utilisé pour prédire, lors d’une enquête, la moyenne d’une variable d’intérêt y dans chaque petit domaine en utilisant une variable auxiliaire administrative x connue sur toute la population. La méthode d’estimation consiste à utiliser une distribution normale, pour modéliser la composante résiduelle du modèle. La considération d’une dépendance résiduelle générale, c’est-à-dire autre que la loi normale donne une méthodologie plus flexible. Cette généralisation conduit à une nouvelle classe de modèles échangeables. En effet, la généralisation se situe au niveau de la modélisation de la dépendance résiduelle qui peut être soit normale (c’est le cas du modèle de Battese et al.) ou non-normale. L’objectif est de déterminer les paramètres propres aux petits domaines avec le plus de précision possible. Cet enjeu est lié au choix de la bonne dépendance résiduelle à utiliser dans le modèle. Le critère de validation croisée sera étudié à cet effet.
Resumo:
Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.
Resumo:
This paper explores the factors associated with the place of death in Burkina Faso, based on mortality data from the Kaya Health and Demographic Surveillance System (Kaya HDSS). A multilevel logistic regression model with random intercept is used to determine the factors associated with the place of death. More than half of the deaths (55%) occur at home. Age, place of residence, distance to the health care centre and cause of death are statistically associated with the place of death. Seniors (50 and over) are more likely to die at home compared to other age grous (66.81 % against 35.9 % for 5-14 years and 44.9 among children under 5 years, p = 0.001). The multivariate results confirm the effect of age, place of residence, living standards quintile and cause of death. The high proportion of deaths occurring at home challenges policy makers in the health care system and calls for programs to adapt the supply of heath care.
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.
Resumo:
This work aims to investigate the relationship between the entrepreneurship and the incidence of bureaucratic corruption in the states of Brazil and Federal District. The main hypothesis of this study is that the opening of a business in Brazilian states is negatively affected by the incidence of corruption. The theoretical reference is divided into Entrepreneurship and bureaucratic corruption, with an emphasis on materialistic perspective (objectivist) of entrepreneurship and the effects of bureaucratic corruption on entrepreneurial activity. By the regression method with panel data, we estimated the models with pooled data and fixed and random effects. To measure corruption, I used the General Index of Corruption for the Brazilian states (BOLL, 2010), and to represent entrepreneurship, firm entry per capita by state. Tests (Chow, Hausman and Breusch-Pagan) indicate that the random effects model is more appropriate, and the preliminary results indicate a positive impact of bureaucratic corruption on entrepreneurial activity, contradicting the hypothesis expected and found in previous articles to Brazil, and corroborating the proposition of Dreher and Gassebner (2011) that, in countries with high regulation, bureaucratic corruption can be grease in the wheels of entrepreneurship
Resumo:
Pesticide residues in food and environment pose serious health risks to human beings. Plant protection laws, among other things, regulate misuse of agricultural pesticides. Compliance with such laws consequently reduces risks of pesticide residues in food and the environment. Studies were conducted to assess the compliance with plant protection laws among tomato farmers in Mvomero District, Morogoro Region, Tanzania. Compliance was assessed by examining pesticide use practices that are regulated by the Tanzanian Plant Protection Act (PPA) of 1997. A total of 91 tomato farmers were interviewed using a structured questionnaire. Purposive sampling was used in selecting at least 30 respondent farmers from each of the three villages of Msufini, Mlali and Doma in Mvomero District, Morogoro Region. Simple Random Sampling was used to obtain respondents from the sampling frame. Individual and social factors were examined on how they could affect pesticide use practices regulated by the law. Descriptive statistics, mainly frequency, were used to analyze the data while associations between variables were determined using Chi-Square and logistic regression model. The results showed that respondents were generally aware of the existence of laws on agriculture, environment and consumer health, although none of them could name a specific Act. The results revealed further that 94.5% of the farmers read instructions on the pesticides label. However, only 21% used the correct doses of pesticides, 40.7% stored pesticides in special stores, 68.1% used protective gear, while 94.5% always read instructions on the label before using a pesticide product. Training influenced the application rate of pesticide (p < 0.001) while awareness of agricultural laws significantly influenced farmers’ tendency to read information on the labels (p < 0.001). The results showed further that education significantly influenced the use of protective gears by farmers (p = 0.042). Education also significantly affected the manner in which farmers stored pesticide-applying equipment (p = 0.024). Furthermore, farmers’ awareness of environmental laws significantly (p = 0.03) affected farmers’ disposal of empty pesticide containers. Results of this study suggest the need for express provisions on safe use and handling of pesticides and related offences in the Act, and that compliance should be achieved through education rather than coercion. Results also suggest establishment of pesticide disposal mechanisms and structures to reduce unsafe disposal of pesticide containers. It is recommended that farmers should be educated and trained on proper use of pesticides. Farmers’ awareness on laws affecting food, environment and agriculture should be improved.
Resumo:
In this study cross-section data was used to analyze the effect of farmers’ demographic, socioeconomic and institutional setting, market access and physical attributes on the probability and intensity of tissue culture banana (TCB) adoption. The study was carried out between July 2011 and November 2011. Both descriptive (mean, variance, promotions) and regression analysis were used in the analysis. A double hurdle regression model was fitted on the data. Using multistage sampling technique, four counties and eight sub-locations were randomly selected. Using random sampling technique, three hundred and thirty farmers were selected from a list of banana households in the selected sub-locations. The adoption level of tissue culture banana (TCB) was about 32%. The results also revealed that the likelihood of TCB adoption was significantly influenced by: availability of TCB planting material, proportion of banana income to the total farm income, per capita household expenditure and the location of the farmer in Kisii County; while those that significantly influenced the intensity of TCB adoption were: occupation of farmers, family size, labour source, farm size, soil fertility, availability/access of TCB plantlets to farmers, distance to banana market, use of manure in planting banana, access to agricultural extension services and index of TCB/non-TCB banana cultivar attributes which were scored by farmers. Compared to West Pokot County, farmers located in Bungoma County are more significantly and likely to adopt TCB technology. Therefore, the results of the study suggest that the probability of adoption and intensity of the use of TCB should be enhanced. This can be done by taking cognizance of these variables in order to meet the priority needs of the smallholder farmers who were the target group. This would lead to alleviating banana shortage in the region for enhanced food security. Subsequently, actors along the banana value chain are encouraged to target the intervention strategies based on the identified farmer, farm and institutional characteristics for enhanced impact on food provision. Opening up more TCB multiplication centres in different regions will make farmers access the TCB technology for enhanced impact on the target population.
Resumo:
Tourist accommodation expenditure is a widely investigated topic as it represents a major contribution to the total tourist expenditure. The identification of the determinant factors is commonly based on supply-driven applications while little research has been made on important travel characteristics. This paper proposes a demand-driven analysis of tourist accommodation price by focusing on data generated from room bookings. The investigation focuses on modeling the relationship between key travel characteristics and the price paid to book the accommodation. To accommodate the distributional characteristics of the expenditure variable, the analysis is based on the estimation of a quantile regression model. The findings support the econometric approach used and enable the elaboration of relevant managerial implications.