945 resultados para multivariate regression tree
Resumo:
Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.
Resumo:
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
Resumo:
Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.
Resumo:
This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.
Resumo:
This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Aim: To evaluate the association between oral health status, socio-demographic and behavioral factors with the pattern of maturity of normal epithelial oral mucosa. Methods: Exfoliative cytology specimens were collected from 117 men from the border of the tongue and floor of the mouth on opposite sides. Cells were stained with the Papanicolaou method and classified into: anucleated, superficial cells with nuclei, intermediate and parabasal cells. Quantification was made by selecting the first 100 cells in each glass slide. Sociodemographic and behavioral variables were collected from a structured questionnaire. Oral health was analyzed by clinical examination, recording decayed, missing and filled teeth index (DMFT) and use of prostheses. Multivariable linear regression models were applied. Results: No significant differences for all studied variables influenced the pattern of maturation of the oral mucosa except for alcohol consumption. There was an increase of cell surface layers of the epithelium with the chronic use of alcohol. Conclusions: It is appropriate to use Papanicolaou cytopathological technique to analyze the maturation pattern of exposed subjects, with a strong recommendation for those who use alcohol - a risk factor for oral cancer, in which a change in the proportion of cell types is easily detected.
Resumo:
We identified and quantified the effect of season, depth, and inner and outer panel mesh size on the trammel net catch species composition and catch rates in four southern European areas (Northeast Atlantic: Basque Country, Spain; Algarve, Portugal; Gulf of Cadiz, Spain; Mediterranean: Cyclades, Greece), all of which are characterised by important trammel net fisheries. In each area, we conducted, in 1999-2000, seasonal, experimental fishing trials at various depths with trammel nets of six different inner/outer panel mesh combinations (i.e., two large outer panel meshes and three small inner panel meshes). Overall, our study covered some of the most commonly used inner panel mesh sizes, ranging from 40 to 140 mm (stretched). We analysed the species composition and catch rates of the different inner/outer panel combinations with regression, multivariate analysis (cluster analysis and multidimensional scaling) and other 'community' techniques (number of species, dominance curves). All our analyses indicated that the outer panel mesh sizes used in the present study did not significantly affect the catch characteristics in terms of number of species, catch rates and species composition. Multivariate analyses and seasonal dominance plots indicated that in Basque, Algarve and Cyclades waters, where sampling covered wide depth ranges, both season and depth strongly affected catch species compositions. For the Gulf of Cadiz, where sampling was restricted to depths 10-30 m, season was the only factor affecting catch species composition and thus group formation. In contrast, the inner panel mesh size did not generally affect multidimensional group formation in all areas but affected the dominance of the species caught in the Algarve and the Gulf of Cadiz. Multivariate analyses also revealed 11 different metiers (i.e., season-depth-species-inner panel mesh size combinations) in the four areas. This clearly indicated the existence of trammel net 'hot spots', which represent essential habitats (e.g., spawning, nursery or wintering grounds) of the life history of the targeted and associated species. The number of specimens caught declined significantly with inner panel mesh size in all areas. We attributed this to the exponential decline in abundance with size, both within- and between-species. In contrast, the number of species caught in each area was not related to the inner mesh size. This was unexpected and might be a consequence of the wide size-selective range of trammel nets. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
2016
Resumo:
In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Despite the remarkable improvements in breast cancer (BC) characterization, accurate prediction of BC clinical behavior is often still difficult to achieve. Some studies have investigated the association between the molecular subtype, namely the basal-like BC and the pattern of relapse, however only few investigated the association between relapse pattern and immunohistochemical defined triple-negative breast cancers (TNBCs). The aim of this study was to evaluate the pattern of relapse in patients with TNBC, namely the primary distant relapse site. One-hundred twenty nine (129) invasive breast carcinomas with follow-up information were classified according to the molecular subtype using immunohistochemistry for ER, PgR and Her2. The association between TNBC and distant relapse primary site was analyzed by logistic regression. Using multivariate logistic regression analysis patients with TNBC displayed only 0.09 (95% CI: 0.00-0.74; p=0.02) the odds of the non-TNBC patients of developing bone primary relapse. Regarding visceral and lymph-node relapse, no differences between in this cohort were found. Though classically regarded as aggressive tumors, TNBCs rarely development primary relapse in bone when compared to non-TNBC, a clinical relevant fact when investigating a metastasis of an occult or non-sampled primary BC.
Resumo:
The Ophira Mini Sling System involves anchoring a midurethral, low-tension tape to the obturator internus muscles bilaterally at the level of the tendinous arc. Success rates in different subsets of patients are still to be defined. This work aims to identify which factors influence the 2-year outcomes of this treatment. Analysis was based on data from a multicenter study. Endpoints for analysis included objective measurements: 1-h pad-weight (PWT), and cough stress test (CST), and questionnaires: International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) and Urinary Distress Inventory (UDI)-6. A logistic regression analysis evaluated possible risk factors for failure. In all, 124 female patients with stress urinary incontinence (SUI) underwent treatment with the Ophira procedure. All patients completed 1 year of follow-up, and 95 complied with the 2-year evaluation. Longitudinal analysis showed no significant differences between results at 1 and 2 years. The 2-year overall objective results were 81 (85.3%) patients dry, six (6.3%) improved, and eight (8.4%) incontinent. A multivariate analysis revealed that previous anti-incontinence surgery was the only factor that significantly influenced surgical outcomes. Two years after treatment, women with previous failed surgeries had an odds ratio (OR) for treatment failure (based on PWT) of 4.0 [95% confidence interval (CI) 1.02-15.57). The Ophira procedure is an effective option for SUI treatment, with durable good results. Previous surgeries were identified as the only significant risk factor, though previously operated patients showed an acceptable success rate.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.