895 resultados para multimodal tasks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo apresenta um modelo matemático de otimização logística para o transporte multimodal de safras agrícolas pelo corredor Centro-Oeste. Tal ferramenta foi desenvolvida no contexto de três amplos projetos de pesquisa financiados pela FINEP e executados por um grupo de universidades. O modelo, conhecido genericamente como Modelo de fluxo de Custo Mínimo Multiproduto, considera a otimização de fluxos em rede, para os produtos açúcar, álcool, milho, soja, óleo de soja, farelo de soja e trigo. O modelo proposto para estimativa dos fluxos inter-regionais mostrou-se uma ferramenta factível para fins de avaliação do potencial de utilização da multimodalidade. A análise destes resultados gera importantes subsídios para a seleção dos locais com potencial para instalação de mecanismos e equipamentos de transferência de cargas, além de auxiliar no dimensionamento dessas infraestruturas. Também é um resultado importante do ferramental desenvolvido a identificação das zonas de cargas que apresentam potencial captável pelas ferrovias, hidrovias e dutovias, ou seja, possibilita a identificação das regiões que revelam potencial para uso da multimodalidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] La responsabilidad es en el transporte multimodal la cuestión más delicada y discutida por doctrina y jurisprudencia. La importancia de esta materia justifica un análisis jurídico detallado de la misma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this research study is to use neural mass models to assess the effect of various connectivity patterns in cortical EEG power spectral density (PSD), and investigate the possibility to derive connectivity circuits from EEG data. To this end, two different models have been built. In the first model an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each one exhibiting a unimodal spectrum, at low, medium or high frequency. Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. Subsequent studies demonstrated that a single population can exhibit many different simultaneous rhythms, provided that some of these come from external sources (for instance, from remote regions). For this reason in the second model an individual ROI is simulated only with a single population. Both models have been validated by comparing the simulated power spectral density with that computed in some cortical regions during cognitive and motor tasks. Another research study is focused on multisensory integration of tactile and visual stimuli in the representation of the near space around the body (peripersonal space). This work describes an original neural network to simulate representation of the peripersonal space around the hands, in basal conditions and after training with a tool used to reach the far space. The model is composed of three areas for each hand, two unimodal areas (visual and tactile) connected to a third bimodal area (visual-tactile), which is activated only when a stimulus falls within the peripersonal space. Results show that the peripersonal space, which includes just a small visual space around the hand in normal conditions, becomes elongated in the direction of the tool after training, thanks to a reinforcement of synapses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is mainly devoted to show how EEG data and related phenomena can be reproduced and analyzed using mathematical models of neural masses (NMM). The aim is to describe some of these phenomena, to show in which ways the design of the models architecture is influenced by such phenomena, point out the difficulties of tuning the dozens of parameters of the models in order to reproduce the activity recorded with EEG systems during different kinds of experiments, and suggest some strategies to cope with these problems. In particular the chapters are organized as follows: chapter I gives a brief overview of the aims and issues addressed in the thesis; in chapter II the main characteristics of the cortical column, of the EEG signal and of the neural mass models will be presented, in order to show the relationships that hold between these entities; chapter III describes a study in which a NMM from the literature has been used to assess brain connectivity changes in tetraplegic patients; in chapter IV a modified version of the NMM is presented, which has been developed to overcomes some of the previous version’s intrinsic limitations; chapter V describes a study in which the new NMM has been used to reproduce the electrical activity evoked in the cortex by the transcranial magnetic stimulation (TMS); chapter VI presents some preliminary results obtained in the simulation of the neural rhythms associated with memory recall; finally, some general conclusions are drawn in chapter VII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research activity characterizing the present thesis was mainly centered on the design, development and validation of methodologies for the estimation of stationary and time-varying connectivity between different regions of the human brain during specific complex cognitive tasks. Such activity involved two main aspects: i) the development of a stable, consistent and reproducible procedure for functional connectivity estimation with a high impact on neuroscience field and ii) its application to real data from healthy volunteers eliciting specific cognitive processes (attention and memory). In particular the methodological issues addressed in the present thesis consisted in finding out an approach to be applied in neuroscience field able to: i) include all the cerebral sources in connectivity estimation process; ii) to accurately describe the temporal evolution of connectivity networks; iii) to assess the significance of connectivity patterns; iv) to consistently describe relevant properties of brain networks. The advancement provided in this thesis allowed finding out quantifiable descriptors of cognitive processes during a high resolution EEG experiment involving subjects performing complex cognitive tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the main Executive Control theories are exposed. Methods typical of Cognitive and Computational Neuroscience are introduced and the role of behavioural tasks involving conflict resolution in the response elaboration, after the presentation of a stimulus to the subject, are highlighted. In particular, the Eriksen Flanker Task and its variants are discussed. Behavioural data, from scientific literature, are illustrated in terms of response times and error rates. During experimental behavioural tasks, EEG is registered simultaneously. Thanks to this, event related potential, related with the current task, can be studied. Different theories regarding relevant event related potential in this field - such as N2, fERN (feedback Error Related Negativity) and ERN (Error Related Negativity) – are introduced. The aim of this thesis is to understand and simulate processes regarding Executive Control, including performance improvement, error detection mechanisms, post error adjustments and the role of selective attention, with the help of an original neural network model. The network described here has been built with the purpose to simulate behavioural results of a four choice Eriksen Flanker Task. Model results show that the neural network can simulate response times, error rates and event related potentials quite well. Finally, results are compared with behavioural data and discussed in light of the mentioned Executive Control theories. Future perspective for this new model are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi tratta lo studio del sistema QNX e dello sviluppo di un simulatore di task hard/soft real-time, tramite uso di un meta-scheduler. Al termine dello sviluppo vengono valutate le prestazioni del sistema operativo QNX Neutrino.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate placement of lesions is crucial for the effectiveness and safety of a retinal laser photocoagulation treatment. Computer assistance provides the capability for improvements to treatment accuracy and execution time. The idea is to use video frames acquired from a scanning digital ophthalmoscope (SDO) to compensate for retinal motion during laser treatment. This paper presents a method for the multimodal registration of the initial frame from an SDO retinal video sequence to a retinal composite image, which may contain a treatment plan. The retinal registration procedure comprises the following steps: 1) detection of vessel centerline points and identification of the optic disc; 2) prealignment of the video frame and the composite image based on optic disc parameters; and 3) iterative matching of the detected vessel centerline points in expanding matching regions. This registration algorithm was designed for the initialization of a real-time registration procedure that registers the subsequent video frames to the composite image. The algorithm demonstrated its capability to register various pairs of SDO video frames and composite images acquired from patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multimodal approach is state-of-the art for effective treatment of functional gastrointestinal disorders (FGD) like irritable bowel syndrome and functional dyspepsia. Based on the now established view that the pathogenesis of FGD is multicausal, evidence-based therapeutic options comprise education about the nature of the disorder, dietary modifications, relaxation techniques, behavioral changes, and pharmacological treatments. These therapies are variously combined depending on the severity of the FGD and the individual needs of the patient. Our overview portrays the options for the therapy of FGD and proposes that these are best provided by an interdisciplinary team of primary care physicians, gastroenterologists, and psychosomatic medicine specialists.