991 resultados para motor expression
Resumo:
c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, Bcl-X-L and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.
Resumo:
Functional expression cloning strategies are highly suitable for the analysis of the molecular control of apoptosis. This approach has two critical advantages. Firstly, it eliminates prior assumptions about the properties of the proteins involved, and, secondly, it selectively targets proteins that are causally involved in apoptosis control and which affect the crucial cellular decision between survival and death. The application of this strategy to the isolation of cDNAs conferring resistance to dexamethasone and gamma-irradiation resulted in the isolation of a partial cDNA for the catalytic subunit of protein phosphatase 4 (PP4). Cells transfected with this partial cDNA in an expression vector downregulated PP4 and were resistant to both dexamethasone and UV radiation, as demonstrated by both membrane integrity and colony-forming assays. These observations suggest that PP4 plays an important proapoptotic role in T lymphocytes.
Resumo:
We are interested in determining whether low maternal vitamin D-3 affects brain development in utero. Whilst the vitamin D receptor (VDR) has been identified in embryonic rat brains, the timing and magnitude of its expression across the brain remains unclear. In this study we have quantitated VDR expression during development as well correlated the timing of its appearance with two vital developmental events, apoptosis and mitosis. Brains from embryonic rats (embryonic days 15-23) were examined. We show that the well-described increase in apoptotic cells and decrease in mitotic cells during development correlates with the appearance of the VDR in brain tissue. Given that vitamin D-3 regulates mitosis and apoptosis in non-neuronal tissue we speculate that the timing of VDR expression in embryonic brain may directly or indirectly mediate features of neuronal apoptosis and mitosis.
Resumo:
in Escherichia coli, the DnaG primase is the RNA polymerase that synthesizes RNA primers at replication forks. It is composed of three domains, a small N-terminal zinc-binding domain, a larger central domain responsible for RNA synthesis, and a C-terminal domain comprising residues 434-581 [DnaG(434-581)] that interact with the hexameric DnaB helicase. Presumably because of this interaction, it had not been possible previously to express the C-terminal domain in a stably transformed E coli strain. This problem was overcome by expression of DnaG(434-581) under control of tandem bacteriophage gimel-promoters, and the protein was purified in yields of 4-6 mg/L of culture and studied by NMR. A TOCSY spectrum of a 2 mM solution of the protein at pH 7.0, indicated that its structured core comprises residues 444-579. This was consistent with sequence conservation among most-closely related primases. Linewidths in a NOESY spectrum of a 0.5 mM sample in 10 mM phosphate, pH 6.05, 0.1 M NaCl, recorded at 36 degreesC, indicated the protein to be monomeric. Crystals of selenomethionine-substituted DnaG(434-581) obtained by the hanging-drop vapor-diffusion method were body-centered tetragonal, space group I4(1)22, with unit cell parameters a = b 142.2 Angstrom, c = 192.1 Angstrom, and diffracted beyond 2.7 Angstrom resolution with synchrotron radiation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for-mutants with induced over-expression of a beta-glucuronidase reporter, under the control of the PDF1.2 promoter. One mutant, iop1 (induced over-expressor of PDF1.2) produced small plants that showed induced over-expression of the pathogenesis-related genes PR-3, PR-4 and PR-1,2 (PDF1.2), combined with a down-regulated induction of PR-1 upon pathogen inoculation. The iop1 mutant showed enhanced resistance to a number of necrotrophic pathogens.
Resumo:
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and,27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P < 0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Use). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Us p participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tight control over circulating juvenile hormone (JH) levels is of prime importance in an insect`s life cycle. Consequently, enzymes involved in JH metabolism, especially juvenile hormone esterases (JHEs), play major roles during metamorphosis and reproduction. In the highly eusocial Hymenoptera, JH has been co-opted into additional functions, primarily in the development of the queen and worker castes and in age-related behavioral development of workers. Within a set of 21 carboxylesterases predicted in the honey bee genome we identified one gene (Amjhe-like) that contained the main functional motifs of insect JHEs. Its transcript levels during larval development showed a maximum at the switch from feeding to spinning behavior, coinciding with a JH titer minimum. In adult workers, the highest levels were observed in nurse bees, where a low JH titer is required to prevent the switch to foraging. Functional assays showed that Amjhe-like expression is induced by JH-III and suppressed by 20-hydroxyecdysone. RNAi-mediated silencing of Amjhe-like gene function resulted in a six-fold increase in the JH titer in adult worker bees. The temporal profile of Amjhe-like expression in larval and adult workers, the pattern of hormonal regulation and the knockdown phenotype are consistent with the function of this gene as an authentic JHE. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.
Resumo:
A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.