996 resultados para molecular sieve
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space- filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.
Resumo:
The snap-trap leaves of the aquatic waterwheel plant (Aldrovanda) resemble those of Venus' flytrap (Dionaea), its distribution and habit are reminiscent of bladderworts (Utricularia), but it shares many reproductive characters with sundews (Drosera). Moreover, Aldrovanda has never been included in molecular phylogenetic studies, so it has been unclear whether snap-traps evolved only once or more than once among angiosperms. Using sequences from nuclear 18S and plastid rbcL, atpB, and matK genes, we show that Aldrovanda is sister to Dionaea, and this pair is sister to Drosera. Our results indicate that snap-traps are derived from flypaper-traps and have a common ancestry among flowering plants, despite the fact that this mechanism is used by both a terrestrial species and an aquatic one. Genetic and fossil evidence for the close relationship between these unique and threatened organisms indicate that carnivory evolved from a common ancestor within this caryophyllid clade at least 65 million years ago.
Resumo:
Phylogenetic relationships among 75 species of Lentibulariaceae, representing the three recognized genera, were assessed by cladistic analysis of DNA sequences from the plastid rps16 intron and the trnL-F region. Sequence data from the two loci were analyzed both separately and in combination. Consensus trees from all analyses are congruent, and parsimony jackknife results demonstrate strong support for relationships both between and within each of the three demonstrably monophyletic genera. The genus Pinguicula is sister to a Genlisea-Utricularia clade, the phylogenetic structure within this clade closely follows Taylor's recent sectional delimitations based on morphology. Three principal clades are shown within Utricularia, with the basal sections Polypoinpholyx and Pleiochasia together forming the sister lineage of the remaining Utricularia species. Of the fundamental morphological specializations, the stoloniferous growth form apparently arose independently within Genlisea and Utricularia three times, and within Utricularia itself, perhaps more than once. The epiphytic habit has evolved independently at least three times, in Pinguicula, in Utricularia section Phyllaria, and within the two sections Orchidioides and Iperua (in the latter as bromeliad tank-epiphytes). The suspended aquatic habit may have evolved independently within sections Utricularia and Vesiculina. Biogeographic optimization on the phylogeny demonstrates patterns commonly associated with the boreotropics hypothesis and limits the spatial origin of Lentibulariaceae to temperate Eurasia or tropical America.
Resumo:
Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for total-evidence phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
The binary diffusivities of water in low molecular weight sugars; fructose, sucrose and a high molecular weight carbohydrate; maltodextrin (DE 11) and the effective diffusivities of water in mixtures of these sugars (sucrose, glucose, fructose) and maltodextrin (DE 11) were determined using a simplified procedure based on the Regular Regime Approach. The effective diffusivity of these mixtures exhibited both the concentration and molecular weight dependence. Surface stickiness was observed in all samples during desorption, with fructose exhibiting the highest and maltodextrin the lowest. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
Quaternary ammonium surfactants were used to control the pore structure of bentonite intercalated with a mixed hydro-sol of silicon and titanium. Porous clay heterostructures of alumina and laponite were prepared in the presence of polyethylene oxide (PEO) surfactants. Participation of the surfactants in the synthesis results in significant changes in the structure of porous clay products. Surfactants are involved in different mechanisms, In the case of bentonite, the mean size of the framework pores was directly proportional to the chain length of the quaternary ammonium surfactants. This indicates a molecular templating mechanism, similar to that observed in the synthesis of MCM41. However, in the case of laponite, the size and volume of the mesopores were related to the amount of PEO surfactants used. By using an appropriate surfactant, we can obtain highly porous clays with various pore structures. Introducing surfactants during intercalation is an efficient strategy for the molecular engineering of porous clay adsorbents and catalysts. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Partial genome characterisation of a non-cultivable marsupial adenovirus is described. Adenovirus-like particles were found by electron microscopy (EM) in the intestinal contents of brushtail possums (Trichosurus vulpecula) in New Zealand. Using degenerate PCR primers complementary to the most conserved genome regions of adenoviruses, the complete nucleotide sequence of the penton base gene, and partial nucleotide sequences of the DNA polymerase, hexon, and pVII genes were obtained. Phylogenetic analysis of the penton base gene strongly suggested that the brushtail possum adenovirus (candidate PoAdV-1) belongs to the recently proposed genus Atadenovirus. Sequence analysis of the PCR products amplified from the intestinal contents of brushtail possums originating from different geographical regions of New Zealand identified a single genotype. This is the first report of molecular confirmation of an adenovirus in a marsupial.
Testing the applicability of molecular genetic markers to population analyses of scleratinian corals
Resumo:
The abundance of coral reefs worldwide is in decline, and despite the ecological importance of reefs, only a limited number of DNA markers have been identified for scleractinian coral genetic studies. This paper addresses the search for new coral molecular markers and investigates the applicability of the cytochrome c oxidase subunit I (COI), the internal transcribed spacer region 1 (ITS1), and the pocilloporin gene to the question of intraspecific variation in the scleractinian coral Pocillopora verrucosa along the southeast African coastline. The COI fragment was 710 bp long and was identical for P. verrucosa (n = 10) and P. damicornis (n = 3). Only two different ITS1 sequences were found (differing by 13 bp insertion), but more importantly, 24% of the sequences were heterogenous indicating that different multiple copies of the sequence exist. Pocilloporin is an intronless gene that was absolutely conserved throughout all P. verrucosa populations (n = 50). Thus, the three DNA regions studied appear unsuitable for the population genetic analyses of P. verrucosa.
Resumo:
The adsorption of three aromatic compounds on to an untreated carbon was investigated. The solution pH was lowered in all experiments so that all the solutes were in their molecular forms. It was shown that the difference in the maximum adsorption of the solutes was mainly a result of the difference in the sizes of the molecules and their functional groups. Further-more, it was illustrated that the packing arrangement was most likely edge-to-face (sorbate-sorbent) with various tilt angles. On the other hand, the affinity and heterogeneity of the adsorption systems were apparently related to the pK(a) values of the solutes.
Resumo:
The efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor was investigated via molecular tools. Genotyping of the polymorphic markers msp1 and msp2 was performed to investigate the number and type of parasite alleles in pre- and posttreatment blood samples collected from 48 patients. Patients were infected with a minimum of 8 msp1 and 14 msp2 allelic types of parasite, and 43% of the patients had more than one allelic type before treatment. The genotyping also revealed that 66.7% of the patients were infected with at least one identical allelic type of parasite before and after treatment and therefore were likely to have experienced recrudescence. All parasites in pre- and posttreatment blood samples carried the K76T mutation in pfcrt, regardless of the clinical response to chloroquine. The sequence polymorphism patterns in pfcrt in the majority of parasites examined were identical to those observed in Bougainville, Papua New Guinea.