979 resultados para microRNA Target Prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To demonstrate that antibody-guided targeting of antigenic MHC class I-peptide tetramer on tumor cells can render them susceptible to lysis by relevant cytotoxic T lymphocytes (CTL), biotinylated HLA-A*0201/Flu matrix peptide complexes were tetramerized on streptavidin molecules previously coupled to Fab' fragments from monoclonal antibodies (mAb) specific for cell surface markers such as carcinoembryonic antigen (CEA), ErbB-2 or CD20. Flow cytometry analysis showed that coating of the HLA-A2-peptide complexes on the four HLA-A2-negative human cancer lines tested (including a CEA-positive colon carcinoma, an ErbB-2(+) breast carcinoma and two CD20(+) B lymphomas) was entirely dependent upon the specificity of the conjugated antibody fragments. More importantly, HLA-A2-restricted Flu matrix peptide-specific CTL were then found to lyse specifically and efficiently the MHC-coated target cells. These results open the way to the development of new immunotherapy strategies based on antibody targeting of MHC class I-peptide complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter. The data identify Cx36 as a novel early marker of β cells and as a target of Beta2/NeuroD1, which is essential for β-cell development and differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocytes serve as a central defense system against infection and injury but can also promote pathological inflammatory responses. Considering the evidence that monocytes exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. We identified a microRNA (miRNA), miR-146a, which is differentially regulated both in mouse (Ly-6C(hi)/Ly-6C(lo)) and human (CD14(hi)/CD14(lo)CD16(+)) monocyte subsets. The single miRNA controlled the amplitude of the Ly-6C(hi) monocyte response during inflammatory challenge whereas it did not affect Ly-6C(lo) cells. miR-146a-mediated regulation was cell-intrinsic and depended on Relb, a member of the noncanonical NF-κB/Rel family, which we identified as a direct miR-146a target. These observations not only provide mechanistic insights into the molecular events that regulate responses mediated by committed monocyte precursor populations but also identify targets for manipulating Ly-6C(hi) monocyte responses while sparing Ly-6Clo monocyte activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn at the Imperial College of London, United Kingdom, from 2007 to 2009. PTEN is a tumour suppressor enzyme that plays important roles in the PI3K pathway which regulates growth, proliferation and survival and is thus related to many human disorders such as diabetes, neurodegenerative diseases, cardiovascular complications and cancer. It is hence of great interest to understand in detail its molecular behaviour and to find small molecules that can switch on/off its activity. For this purpose, metal complexes have been synthesized and preliminary studies in vivo show that all are capable of inhibiting PTEN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crizotinib is a first-in-class oral anaplastic lymphoma kinase (ALK) inhibitor targeting ALK-rearranged non-small-cell lung cancer. The therapy was approved by the US FDA in August 2011 and received conditional marketing approval by the European Commission in October 2012 for advanced non-small-cell lung cancer. A break-apart FISH-based assay was jointly approved with crizotinib by the FDA. This assay and an immunohistochemistry assay that uses a D5F3 rabbit monoclonal primary antibody were also approved for marketing in Europe in October 2012. While ALK rearrangement has relatively low prevalence, a clinical benefit is exhibited in more than 85% of patients with median progression-free survival of 8-10 months. In this article, the authors summarize the therapy and alternative test strategies for identifying patients who are likely to respond to therapy, including key issues for effective and efficient testing. The key economic considerations regarding the joint companion diagnostic and therapy are also presented. Given the observed clinical benefit and relatively high cost of crizotinib therapy, companion diagnostics should be evaluated relative to response to therapy versus correlation alone whenever possible, and both high inter-rater reliability and external quality assessment programs are warranted.