967 resultados para laser induced pulsed photoacoustics
Resumo:
Experiments on laser-induced ion acceleration from ultra-thin (nm) foil targets reveal a dramatic increase in the conversion efficiency and the acceleration of C6$+$ions in a phase stable way by the laser radiation pressure.
Resumo:
The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by haemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.
Resumo:
Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.
Resumo:
High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.
The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.
A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.
The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.
Resumo:
La caractérisation de matériaux par spectroscopie optique d’émission d’un plasma induit par laser (LIPS) suscite un intérêt qui ne va que s’amplifiant, et dont les applications se multiplient. L’objectif de ce mémoire est de vérifier l’influence du choix des raies spectrales sur certaines mesures du plasma, soit la densité électronique et la température d’excitation des atomes neutres et ionisés une fois, ainsi que la température d’ionisation. Nos mesures sont intégrées spatialement et résolues temporellement, ce qui est typique des conditions opératoires du LIPS, et nous avons utilisé pour nos travaux des cibles binaires d’aluminium contenant des éléments à l’état de trace (Al-Fe et Al-Mg). Premièrement, nous avons mesuré la densité électronique à l’aide de l’élargissement Stark de raies de plusieurs espèces (Al II, Fe II, Mg II, Fe I, Mg I, Halpha). Nous avons observé que les densités absolues avaient un comportement temporel différent en fonction de l’espèce. Les raies ioniques donnent des densités électroniques systématiquement plus élevées (jusqu’à 50 % à 200 ns après l’allumage du plasma), et décroissent plus rapidement que les densités issues des raies neutres. Par ailleurs, les densités obtenues par les éléments traces Fe et Mg sont moindres que les densités obtenues par l’observation de la raie communément utilisée Al II à 281,618 nm. Nous avons parallèlement étudié la densité électronique déterminée à l’aide de la raie de l’hydrogène Halpha, et la densité électronique ainsi obtenue a un comportement temporel similaire à celle obtenue par la raie Al II à 281,618 nm. Les deux espèces partagent probablement la même distribution spatiale à l’intérieur du plasma. Finalement, nous avons mesuré la température d’excitation du fer (neutre et ionisé, à l’état de trace dans nos cibles), ainsi que la température d’ionisation, à l’aide de diagrammes de Boltzmann et de Saha-Boltzmann, respectivement. À l’instar de travaux antérieurs (Barthélémy et al., 2005), il nous est apparu que les différentes températures convergeaient vers une température unique (considérant nos incertitudes) après 2-3 microsecondes. Les différentes températures mesurées de 0 à 2 microsecondes ne se recoupent pas, ce qui pourrait s’expliquer soit par un écart à l’équilibre thermodynamique local, soit en considérant un plasma inhomogène où la distribution des éléments dans la plume n’est pas similaire d’un élément à l’autre, les espèces énergétiques se retrouvant au cœur du plasma, plus chaud, alors que les espèces de moindre énergie se retrouvant principalement en périphérie.
Resumo:
Laser induced photoacoustic (PA) technique is used in the study of photostability of polymethyl methacrylate (PMMA) films doped with Rhodamine 6G -Rhodamine B dye system. Energy transfer from a donor molecule to an acceptor molecule in a dye mixture affects the output of the dye system. Details of investigations on the role of laser power, modulation frequency and the irradiation wavelength on the photosensitivity of the dye mixture doped PMMA films are presented.
Resumo:
Nondestructive photothermal methods as well as optical absorption and fluorescence spectroscopy are utilized to characterise three different materials, both thermally and optically. The possibility of using montmorillonite clay minerals, after textile waste-water treatment, is investigated for further applications. The laser induced luminescence studies and thermal characterisation of certain rare earth titanates prepared by self propagating high temperature synthesis method are also presented. Moreover, effort is made to characterise rare earth doped sol gel silica glasses with the help of these nondestructive techniques.
Resumo:
Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.
Resumo:
A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation.
Resumo:
Pulsed photoacoustic studies in solutions of C70 in toluene are made using the 532-nm radiation from a frequency-doubled Nd:YAG laser. It is found that contrary to expectation, there is no photoacoustic (PA) signal enhancement in the power-limiting range of laser fluences. Instead, the PA signal tends to saturate during optical power-limiting phenomenon. This could be due to the enhanced optical absorption from the photoexcited state and hence the depletion of the ground-state population. PA measurements also ruled out the possibility of multiphoton absorption in the C70 solution. We demonstrate that the nonlinear absorption leading to optical limiting is mainly due to reverse saturable absorption.
Resumo:
The changes in emission characteristics of a neon hollow cathode discharge by resonant laser excitation of 1s 5→2p 2 and 1s 5→2p 4 transition have been studied by simultaneously monitoring the optogalvanic effect and the laser induced fluorescence. It has been observed that resonant excitation causes substantial variation in the relative intensities of lines in the emission spectrum of neon discharge.
Resumo:
The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the F = 4 and F = 5 hyperfine levels of the ground state of hydrogenlike ^209 Bi^82+ was measured to be \lamda_0 = 243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited F = 5 sublevel was determined to be \tau_0 = 0.351(16) ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.
Resumo:
Many ultrafast structural phenomena in solids at high fluences are related to the hardening or softening of particular lattice vibrations at lower fluences. In this paper we relate femtosecond-laser-induced phonon frequency changes to changes in the electronic density of states, which need to be evaluated only in the electronic ground state, following phonon displacement patterns. We illustrate this relationship for a particular lattice vibration of magnesium, for which we—surprisingly—find that there is both softening and hardening as a function of the femtosecond-laser fluence. Using our theory, we explain these behaviours as arising from Van Hove singularities: We show that at low excitation densities Van Hove singularities near the Fermi level dominate the change of the phonon frequency while at higher excitations Van Hove singularities that are further away in energy also become important. We expect that our theory can as well shed light on the effects of laser excitation of other materials.
Resumo:
This paper reports the surface morphologies and ablation of crystalline silicon wafers irradiated by infra-red 775 nm Ti:sapphire femtosecond laser. The effects of energy fluences (below and above single-pulse modification) with different number of pulses were studied. New morphological features such as pits, cracks formation, Laser-Induced Periodic Surface Structures (LIPSS) and ablation were observed. The investigation indicated that there are two distinct mechanisms under femtosecond laser irradiation: low fluence regime with different morphological features and high fluence regime with high material removal and without complex morphological features.
Resumo:
The purpose of this research was to evaluate the severity of renal ischemia/reperfusion injury as determined by histology and by laser-induced fluorescence (LIF) with excitation wavelengths of 442 nm and 532 nm. Wistar rats (four groups of six animals) were subjected to left renal warm ischemia for 20, 40, 60 and 80 min followed by 10 min of reperfusion. Autofluorescence was determined before ischemia (control) and then every 5-10 min thereafter. Tissue samples for histology were harvested from the right kidney (control) and from the left kidney after reperfusion. LIF and ischemia time showed a significant correlation (p < 0.0001 and r (2)=0.47, and p=0.006 and r (2)=0.25, respectively, for the excitation wavelengths of 442 nm and 532 nm). Histological scores showed a good correlation with ischemia time (p < 0.0001). The correlations between optical spectroscopy values and histological damage were: LIF at 442 nm p < 0.0001, LIF at 532 nm p=0.001; IFF (peak of back scattered light/LIF) at 442 nm p > 0.05, and IFF at 532 nm p > 0.05. After reperfusion LIF tended to return to preischemic basal levels which occurred in the presence of histological damage. This suggests that factors other than morphological alterations may have a more relevant effect on changes observed in LIF. In conclusion, renal ischemia/reperfusion changed tissue fluorescence induced by laser. The excitation light of 442 nm showed a better correlation with the ischemia time and with the severity of tissue injury.