856 resultados para ion-track membranes
Resumo:
The mechanisms through which aldosterone promotes apparently opposite effects like salt reabsorption and K(+) secretion remain poorly understood. The identification, localization, and physiological analysis of ion transport systems in distal nephron have revealed an intricate network of interactions between several players, revealing the complex mechanism behind the aldosterone paradox. We review the mechanisms involved in differential regulation of ion transport that allow the fine tuning of salt and K(+) balance.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.
Resumo:
The effects of blood components, nerve-cord severance, and ecdysone therapy on the posterior midgut epithelial cells of 5th-instar Rhodnius prolixus nymphs 10 days after feeding were analyzed by transmission electron microscopy. Cutting the nerve-cord of the blood-fed insects partially reduced the development of microvilli and perimicrovillar membranes (PMM), and produced large vacuoles and small electrondense granules; insects fed on Ringer's saline diet exhibited well developed microvilli and low PMM production; swolled rough endoplasmatic reticulum and electrondense granules; Ringer's saline meal with ecdysone led to PMM development, glycogen particles, and several mitochondria in the cytoplasm; epithelial cells of the insects fed on Ringer's saline meal whose nerve-cord was severed showed heterogeneously distributed microvilli with reduced PMM production and a great quantity of mitochondria and glycogen in the cytoplasm; well developed microvilli and PMM were observed in nerve-cord severed insects fed on Ringer's saline meal with ecdysone; Ringer's saline diet containing hemoglobin recovered the release of PMM; and insects fed on human plasma showed slightly reduced PMM production, although the addition of ecdysone in the plasma led to a normal midgut ultrastructural organization. We suggest that the full development of microvilli and PMM in the epithelial cells depends on the abdominal distension in addition to ingestion of hemoglobin, and the release of ecdysone.
Resumo:
PURPOSE: The aim of this study was to evaluate the direct effect of surgical treatment of subfoveolar neovascular membranes in age related macular degeneration to macular functions. PATIENTS AND METHODS: Thirteen eyes of 13 patients were included in this study. Macular function was assayed by visual acuity and central visual field using the Octopus perimeter before surgery and in the first three post operative months. Pre and post operative fluorescein angiography frames were digitalized and the size of each lesions were compared. RESULTS: After a 3 months follow up, visual acuity remained stable or improved in 66% of the patients. However, visual acuity was better than 0.1 in 15% of the patients. Central visual field comparison disclosed a significant worsening of the retinal sensitivity in the 3 degree field surrounding the central point. On fluorescein frames, submacular scar was 141% of the size of the neovascular membrane. After a mean follow up of 6.9 months (range 3-14), one case of recurrence occurred. A cataract was observed in 85% of the phakic patients followed for more than six months. CONCLUSION: After a short term follow up, surgery can stabilise visual acuity, even though it remains poor. A worsening of the scotoma in the 3 degrees surrounding the central point is observed. However, patients noticed a subjective visual improvement in 62% of the case.
Resumo:
Dementia and the ageing prison population: treatment challenges and examples of good practice.The aims of this report are to scope existing research on treating and managing male offenders with cognitive impairment to identify and share examples of good practice employed by a handful of prisons around the globe.Read full report here (pdf).��
Resumo:
The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.
Resumo:
The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.
Resumo:
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 µM), or by inhibiting the H+-pump with bafilomycin (4 µM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 µM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.
Resumo:
BACKGROUND: In large randomized multicenter trials, ranibizumab has shown its therapeutic efficacy for exudative age-related macular degeneration (AMD). The aim of this paper is to report the real-life clinical experience with this treatment for occult and minimally classic membranes without pigment epithelium detachment. METHODS: We conducted a retrospective chart review of 37 patients with occult and minimally classic neovascular membranes in AMD, without pigment epithelium detachment. RESULTS: The mean visual improvement of 2 lines at 3, 6 and 9 months corresponds well with the results of the large trials. A mean number of 5 reinjections was reached by month 8. It may potentially exceed the mean 5.5 injections of the PrONTO study (prospective optical coherence tomography imaging of patients with neovascular AMD treated with intraocular ranibizumab). At months 6-8 recurrence was frequently observed. CONCLUSION: The early experience of ranibizumab in clinical practice brings similarly good results as the large-scale trials. However, interrupting the treatment too early may be a disadvantage.
Resumo:
Purpose:To report the functional, anatomic outcome and safety profile of 23-gauge pars plana vitrectomy (PPV) combined with peeling and intravitreal injection of triamcinolone acetonide (TA) in eyes with idiopathic epiretinal membranes (ERM). Methods:Retrospective, nonrandomized study of consecutive patients who underwent 23-gauge transconjunctival sutureless PPV with subsequent membrane peeling and intravitreal TA injection for an idiopathic ERM. All patients were operated between February 2007 and February 2008 at the Jules Gonin University Eye Hospital. The minimum follow-up was 6-months. Results:Thirty-nine eyes of 39 patients were included. The mean follow-up was 7 months (SD: 2.2, range: 6-15 months). Twenty-two (56%) eyes were pseudophakic and 17 (44%) were phakic at the time of surgery. Mean preoperative intraocular pressure (IOP) was 14 mmHg (SD: 3.5). At the final follow-up mean IOP was 14.5 (SD: 2.7) that did not differ significantly from the IOP at baseline (P: 0.14- 2-tailed t test). Five patients (13%) needed temporary topical anti-glaucoma treatment.Mean preoperative BCVA was 0.28 decimal equivalent (logMAR 0.54, SD: 0.2, range: 1.0 - 0.2). and improved significantly (P <0.0001, 2-tailed t test) to a mean of 0.6 decimal equivalent (logMAR 0.22, SD: 0.16, range: 0.6 - 0) at the final follow-up. The visual acuity improved by a mean of 3.2 lines (SD 2.1, range 0- 8). Twenty-nine patients (74%) demonstrated a gain of 3 or more lines.Mean central macular thickness (CMT) was 456 µm (SD: 77) at the baseline that reduced significantly (P <0.0001, 2-tailed t test) at the final follow-up to 327µm (SD: 79). Average CMT reduction was 131µm (SD: 77, range: 36- 380 µm). A subgroup analysis of 15 selected cases that had CMT measurement 1 week after surgery demonstrated that 84% of the total final reduction in CMT occurred during the first week. Conclusions:23-gauge sutureless transconjunctival vitrectomy with the concomitant administration of intravitreal TA is a safe and effective technique for the treatment of idiopathic ERM and may speed up anatomical recovery.
Resumo:
Calcium uptake by tonoplast enriched membrane vesicles from maize (Zea mays L. cv. LG 11) primary roots was studied. A pH gradient, measured by the fluorescence quenching of quinacrine, was generated across sealed vesicles driven by the pyrophosphate-dependent proton pump. The fluorescence quenching was strongly inhibited by Ca2+; moreover, when increasing Ca2+ concentrations were added to vesicles at steady-state, a concomitant decrease in the proton gradient was observed. Ca2+ uptake using Ca-45(2+) was linear from 10 min when oxalate (10 mM) was present, while Ca2+ uptake was completely inhibited with proton ionophores (FCCP and monensin), indicating a Ca2+/H+ antiport. Membranes were further fractionated using a linear sucrose density gradient (10-45%) and were identified with marker enzymes. Ca2+ uptake co-migrated with the tonoplast pyrophosphate-dependent proton pumping, pyrophosphatase and ATPase activities: the Ca2+/H+ antiport is consequently located at the tonoplast.