756 resultados para height-structured habitat metrics
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
Capsule Habitat parameters associated with 706 Barn Owl (Tyto alba) nesting boxes in Israel were analysed. Pairs bred in 259 of the boxes. The intensity of agricultural practices at nestbox sites were shown to have only a weak effect on aspects of Barn Owl breeding in this region.
Resumo:
As adult height is a well-established retrospective measure of health and standard of living, it is important to understand the factors that determine it. Among them, the influence of socio-environmental factors has been subjected to empirical scrutiny. This paper explores the influence of generational (or environmental) effects and individual and gender-specific heterogeneity on adult height. Our data set is from contemporary Spain, a country governed by an authoritarian regime between 1939 and 1977. First, we use normal position and quantile regression analysis to identify the determinants of self-reported adult height and to measure the influence of individual heterogeneity. Second, we use a Blinder-Oaxaca decomposition approach to explain the `gender height gap¿ and its distribution, so as to measure the influence on this gap of individual heterogeneity. Our findings suggest a significant increase in adult height in the generations that benefited from the country¿s economic liberalization in the 1950s, and especially those brought up after the transition to democracy in the 1970s. In contrast, distributional effects on height suggest that only in recent generations has ¿height increased more among the tallest¿. Although the mean gender height gap is 11 cm, generational effects and other controls such as individual capabilities explain on average roughly 5% of this difference, a figure that rises to 10% in the lowest 10% quantile.
Resumo:
OBJECTIVES: Growth retardation is a frequent complication of paediatric inflammatory bowel disease (IBD). Only a few studies report the final height of these patients, with controversial results. We compared adult height of patients with paediatric IBD with that of patients with adult-onset disease. METHODS: Height data of 675 women 19-44 years of age and 454 men 23-44 years of age obtained at inclusion in the Swiss IBD cohort study registry were grouped according to the age at diagnosis: (a) prepubertal (men≤13, women≤11 years), (b) pubertal (men 13-22, women 11-18 years) and (c) adult (men>22, women>18 years of age), and compared with each other and with healthy controls. RESULTS: Male patients with prepubertal onset of Crohn's disease (CD) had significantly lower final height (mean 172±6 cm, range 161-182) compared with men with pubertal (179±6 cm, 161-192) or adult (178±7 cm, 162-200) age at onset and the general population (178±7 cm, 142-204). Height z-scores standardized against heights of the normal population were significantly lower in all patients with a prepubertal diagnosis of CD (-0.8±0.9) compared with the other patient groups (-0.1±0.8, P<0.001). Prepubertal onset of CD emerged as a risk factor for reduced final height in patients with prepubertal CD. No difference for final height was found between patients with ulcerative or unclassified IBD diagnosed at prepubertal, pubertal or adult age. CONCLUSION: Prepubertal onset of CD is a risk for lower final height, independent of the initial disease location and the necessity for surgical interventions.
Resumo:
Abstract. The ability of 2 Rapid Bioassessment Protocols (RBPs) to assess stream water quality was compared in 2 Mediterranean-climate regions. The most commonly used RBPs in South Africa (SAprotocol) and the Iberian Peninsula (IB-protocol) are both multihabitat, field-based methods that use macroinvertebrates. Both methods use preassigned sensitivity weightings to calculate metrics and biotic indices. The SA- and IB-protocols differ with respect to sampling equipment (mesh size: 1000 lm vs 250 300 lm, respectively), segregation of habitats (substrate vs flow-type), and sampling and sorting procedures (variable time and intensity). Sampling was undertaken at 6 sites in South Africa and 5 sites in the Iberian Peninsula. Forty-four and 51 macroinvertebrate families were recorded in South Africa and the Iberian Peninsula, respectively; 77.3% of South African families and 74.5% of Iberian Peninsula families were found using both protocols. Estimates of community similarity compared between the 2 protocols were .60% similar among sites in South Africa and .54% similar among sites in the Iberian Peninsula (BrayCurtis similarity), and no significant differences were found between protocols (Multiresponse Permutation Procedure). Ordination based on Non-metric Multidimensional Scaling grouped macroinvertebrate samples on the basis of site rather than protocol. Biotic indices generated with the 2 protocols at each site did not differ. Thus, both RBPs produced equivalent results, and both were able to distinguish between biotic communities (mountain streams vs foothills) and detect water-quality impairment, regardless of differences in sampling equipment, segregation of habitats, and sampling and sorting procedures. Our results indicate that sampling a single habitat may be sufficient for assessing water quality, but a multihabitat approach to sampling is recommended where intrinsic variability of macroinvertebrate assemblages is high (e.g., in undisturbed sites in regions with Mediterranean climates). The RBP of choice should depend on whether the objective is routine biomonitoring of water quality or autecological or faunistic studies.
Resumo:
The diverse vertebrate remains from the Upper Cretaceous freshwater settings at Iharkut, Hungary, contain two fossil groups, Pycnodontiformes fish and Mosasauridae that are almost exclusively known from marine palaeo-environments. Hence, their appearance in alluvial sediments is very unusual. Trace element and isotope compositions of the remains have been analyzed to investigate the taphonomy and the ecological differences among the different fossil groups present at Iharkut. All examined fossils have undergone post-depositional diagenetic alteration, which resulted in high concentrations of REE, U, and Fe, together with almost complete homogenization of delta(18)O(CO3) values. Similar REE patterns in different fossils suggest a common origin for all remains, hence the discovered species most likely lived in the same local ecosystem. Despite partial diagenetic overprinting, the delta(18)O(PO4) values of the fossils indicate sufficient taxon-specific isotopic diversity to permit some broad conclusions on the palaeo-environment of the fossils. In particular, it is apparent that the isotopic composition of the Pycnodontiformes fish and Mosasauridae remains is most compatible with a freshwater palaeo-habitat and incompatible with a marine palaeo-environment. In addition, the Sr concentration and isotope data indicate that the Pycnodontiformes and Mosasauridae likely lived predominantly in a freshwater environment and were not simply occasional visitors to the Iharkut river ecosystem. Regarding other fossil groups, high delta(18)O(PO4) values of Alligatoroidea and Iharkutosuchus teeth suggest that these small crocodile species might have inhabited swamps and ponds where the water was relatively rich in (18)O due to evaporation. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The use of wild oat races in artificial hybridization with cultivated oat (Avena sativa L.) has been used as a way of increasing the variability. This work aimed to identify the variability for plant height and flowering date of groups of cultivated oat genotypes, wild introductions of A. fatua L. and segregating populations of natural crosses between A. sativa and A. fatua. Wide genetic variability was observed for both traits in the groups and between them. The wild group of A. fatua L. showed high plants with early maturity, but in the segregating group there was reduced plant height and early maturity. The wild introductions of A. fatua L. studied in this work can be used in oat breeding programs to increase genetic variability by transferring specific characters into the cultivated germ plasm.
Resumo:
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species' traits and species' coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.
Resumo:
Capercaillie, Tetrao urogallus, is a threatened species in central Europe, and Swiss populations declined 40 to 50 % between 1970 and 1985. Capercaillie are sensitive to forest structure, and loss of habitat is a major cause of their decline. Knowledge of habitat characteristics is therefore essential for capercaillie conservation. Here, we present models predicting capercaillie probability of occurrence, based on relevant structural habitat variables. Models were built using multiple logistic regression analyses on capercaillie presence/absence data. Vegetation survey was carried out in July 1999 in a 170-km2 forested area (Jura mountains, canton de Vaud, western Switzerland) inhabited by capercaillie and presence/absence of the species was assessed according to dropping presence/absence. The survey was based on 10-m-radius sample plots each in a 1-km2 forest patch (n = 76 with capercaillie droppings, n = 80 without). A first model included seven out of 27 measured habitat variables and a second model only four. The latter model best represents practical needs. It includes three variables which had a negative impact on capercaillie presence: tree and shrub covers and spruce, Picea excelsa, shrub cover, and one which had a positive effect: bilberry, Vaccinium myrtillus, cover, highlighting that capaercaillie selected open forest with high bilberry abundance. The model can be used to map potential capercaillie habitat distribution and to manage the habitat in favour of capercaillie (protection and adapted forestry practices) in the Swiss Jura mountains.
Resumo:
Most non-grazed Iowa woodlands and surrounding openings are excellent habitat for a variety of birds and animals if there is a diversity of over story tree species and understory vegetation. As vegetative structures of woodlands change over time, the diversity of the woodland will change, and some species of birds and animals will benefit more then others. To optimize habitat development for the wildest range of bird and animal species, concentrate on maintaining as much vegetative diversity in the woodland as possible. To make improvement for individual species, the special needs of those species will have to be met by targeting precise woodland activities in specific areas.