896 resultados para graph entropy
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
A model based on graph isomorphisms is used to formalize software evolution. Step by step we narrow the search space by an informed selection of the attributes based on the current state-of-the-art in software engineering and generate a seed solution. We then traverse the resulting space using graph isomorphisms and other set operations over the vertex sets. The new solutions will preserve the desired attributes. The goal of defining an isomorphism based search mechanism is to construct predictors of evolution that can facilitate the automation of ’software factory’ paradigm. The model allows for automation via software tools implementing the concepts.
Resumo:
A model based on graph isomorphisms is used to formalize software evolution. Step by step we narrow the search space by an informed selection of the attributes based on the current state-of-the-art in software engineering and generate a seed solution. We then traverse the resulting space using graph isomorphisms and other set operations over the vertex sets. The new solutions will preserve the desired attributes. The goal of defining an isomorphism based search mechanism is to construct predictors of evolution that can facilitate the automation of ’software factory’ paradigm. The model allows for automation via software tools implementing the concepts.
Resumo:
In this paper, Bond Graphs are employed to develop a novel mathematical model of conventional switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A unique causality bond graph model of hybrid models is suggested with the operation of the switch and the diode to be represented by a Modulated Transformer with a binary input and a resistor with fixed conductance causality. The operation of the diode is controlled using an if-then function within the model. The extracted hybrid model is implemented on a Boost and Buck converter with their operations to change from CCM to DCM and to return to CCM. The vector fields of the models show validity in a wide operation area and comparison with the simulation of the converters using PSPICE reveals high accuracy of the proposed model, with the Normalised Root Means Square Error and the Maximum Absolute Error remaining adequately low. The model is also experimentally tested on a Buck topology.
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (SIAM J Math Anal 46(5):3518–3539, 2014). The estimate we derive is optimal in the L∞(0,T;dG) norm for the strain and the L2(0,T;dG) norm for the velocity, where dG is an appropriate mesh dependent H1-like space.
Resumo:
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
Resumo:
Evidence of jet precession in many galactic and extragalactic sources has been reported in the literature. Much of this evidence is based on studies of the kinematics of the jet knots, which depends on the correct identification of the components to determine their respective proper motions and position angles on the plane of the sky. Identification problems related to fitting procedures, as well as observations poorly sampled in time, may influence the follow-up of the components in time, which consequently might contribute to a misinterpretation of the data. In order to deal with these limitations, we introduce a very powerful statistical tool to analyse jet precession: the cross-entropy method for continuous multi-extremal optimization. Only based on the raw data of the jet components (right ascension and declination offsets from the core), the cross-entropy method searches for the precession model parameters that better represent the data. In this work we present a large number of tests to validate this technique, using synthetic precessing jets built from a given set of precession parameters. With the aim of recovering these parameters, we applied the cross-entropy method to our precession model, varying exhaustively the quantities associated with the method. Our results have shown that even in the most challenging tests, the cross-entropy method was able to find the correct parameters within a 1 per cent level. Even for a non-precessing jet, our optimization method could point out successfully the lack of precession.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an automatic method to detect and classify weathered aggregates by assessing changes of colors and textures. The method allows the extraction of aggregate features from images and the automatic classification of them based on surface characteristics. The concept of entropy is used to extract features from digital images. An analysis of the use of this concept is presented and two classification approaches, based on neural networks architectures, are proposed. The classification performance of the proposed approaches is compared to the results obtained by other algorithms (commonly considered for classification purposes). The obtained results confirm that the presented method strongly supports the detection of weathered aggregates.
Resumo:
We study and compare the information loss of a large class of Gaussian bipartite systems. It includes the usual Caldeira-Leggett-type model as well as Anosov models ( parametric oscillators, the inverted oscillator environment, etc), which exhibit instability, one of the most important characteristics of chaotic systems. We establish a rigorous connection between the quantum Lyapunov exponents and coherence loss, and show that in the case of unstable environments coherence loss is completely determined by the upper quantum Lyapunov exponent, a behavior which is more universal than that of the Caldeira-Leggett-type model.
Resumo:
Measurements of X-ray diffraction, electrical resistivity, and magnetization are reported across the Jahn-Teller phase transition in LaMnO(3). Using a thermodynamic equation, we obtained the pressure derivative of the critical temperature (T(JT)), dT(JT)/dP = -28.3 K GPa(-1). This approach also reveals that 5.7(3)J(mol K)(-1) comes from the volume change and 0.8(2)J(mol K)(-1) from the magnetic exchange interaction change across the phase transition. Around T(JT), a robust increase in the electrical conductivity takes place and the electronic entropy change, which is assumed to be negligible for the majority of electronic systems, was found to be 1.8(3)J(mol K)(-1).
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.