872 resultados para dynamic and static qualities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n = 14; 63.6 +/- 4.0 yr, 79.7 +/- 17.2 kg, and 163.9 +/- 9.8 cm), a PT group (n = 16; 64.9 +/- 3.9 yr. 63.9 +/- 11.9 kg, and 157.4 +/- 7.7 cm), or a control group (n = 13; 63.0 +/- 4.0 yr, 67.2 +/- 10.8 kg, and 159.8 +/- 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p < .05), (b) increasing quadriceps muscle CSA (p < .05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p < .05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report original measurements of total cross sections (TCSs) for positron scattering from the cyclic ethers oxirane (C2H4O), 1,4-dioxane (C4H8O2), and tetrahydropyran (C5H10O). The present experiments focus on the low energy range from similar to 0.2 to 50 eV, with an energy resolution smaller than 300 meV. This study concludes our systematic investigation into TCSs for a class of organic compounds that can be thought of as sub-units or moieties to the nucleotides in living matter, and which as a consequence have become topical for scientists seeking to simulate particle tracks in matter. Note that as TCSs specify the mean free path between collisions in such simulations, they have enjoyed something of a recent renaissance in interest because of that application. For oxirane, we also report original Schwinger multichannel elastic integral cross section (ICS) calculations at the static and static plus polarisation levels, and with and without Born-closure that attempts to account for the permanent dipole moment of C2H4O. Those elastic ICSs are computed for the energy range 0.5-10 eV. To the best of our knowledge, there are no other experimental results or theoretical calculations against which we can compare the present positron TCSs. However, electron TCSs for oxirane (also known as ethylene oxide) and tetrahydropyran do currently exist in the literature and a comparison to them for each species will be presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696378]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Specific research tools and designs can assist in identifying the efficiency of physical activity in elderly women. Objectives: To identify the effects of physical activity on the physical condition of older women. Method: A one-year-long physical activity program (123 sessions) was implemented for women aged 60 years or older. Four physical assessments were conducted, in which weight, height, BMI, blood pressure, heart rate, absences, grip strength, flexibility, VO2max, and static and dynamic balance were assessed. The statistical analyses included a repeated measures analysis, both inferential (analysis of variance - ANOVA) and effect size (Cohen's d coefficient), as well as identification of the participants' efficiency (Data Envelopment Analysis - DEA). Results: Despite the observation of differences that depended on the analysis used, the results were successful in the sense that they showed that physical activity adapted to older women can effectively change the decline in physical ability associated with aging, depending on the purpose of the study. The 60-65 yrs group was the most capable of converting physical activity into health benefits in both the short and long term. The >65 yrs group took less advantage of physical activity. Conclusions: Adherence to the program and actual time spent on each type of exercise are the factors that determine which population can benefit from physical activity programs. The DEA allows the assessment of the results related to time spent on physical activity in terms of health concerns. Article registered in Clinicaltrials.gov under number NCT01558401.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ornamental market is dynamic and demands constant novelties. The use of fruit crops as ornamental plants can be an interesting alternative with very differentiated and original products. The banana germplasm bank at Embrapa Cassava and Fruits has been primarily used in the breeding program for generating new cultivars as food. To diversify and expand the use of this collection, accessions with ornamental potential have been selected to obtain new hybrids. This work was aimed at characterizing the progeny of ornamental Musa L. spp. by grouping the hybrids according to the following uses: landscape plants, potted plants, cut flower, or minifruits. Forty-two hybrids were evaluated with 14 quantitative and 12 qualitative descriptors in three production cycles. In addition, assays for resistance to black and yellow Sigatoka and to Fusarium wilt were performed. Variability was observed for all the characteristics evaluated within progenies, especially with regard to leaf color, fruit, peduncle, rachis, and heart. All evaluated hybrids were resistant to yellow Sigatoka and to Fusarium wilt and were resistant or showed reduced symptoms of susceptibility to black Sigatoka. Most hybrids (82%) presented reduced plant height. After clustering by use category, the hybrids RM 09, RM 38, RM 37, and RM 33 were selected and recommended to be used as cut flowers, minifruits, or landscaping plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this conference we report cross sections for elastic collisions of low-energy electrons with the HCOOH…(H2O)n complexes, with n = 1, 2 and 3. The scattering cross sections were computed with the Schwinger multichannel method [K. Takatsuka and V. McKoy, Phys. Rev. A 24 , 2473 (1981); Phys. Rev. A 30 , 1734 (1984)] with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] in the static-exchange and static-exchange plus polarization approximations, for energies from 0.5 eV to 6 eV. We considered some diÆerent hydrogen-bonded structures for the complexes that were generated with classical Monte Carlo simulations [K. Coutinho and S. Canuto, J. Chem. Phys. 113, 9132, (2000)]. The aim of this work is to investigate the effect of the surrounding water molecules on the π* shape resonance of the solute. Previous theoretical and experimental studies carried out in the gas phase reported a π* state for HCOOH at around 1.9 eV. For the n = 1 case and for all complexes, the stabilization of the resonance was observed (it appears at lower energy compared to the value obtained in the gas phase), as reported previously for the CH2O…H2O complexes [T. C. Freitas, M. A. P. Lima, S. Canuto, and M. H. F. Bettega, Phys. Rev. A 80, 062710 (2009)]. This result indicates that the presence of the solvent may affect the processes related to the π* state, such as the molecular dissociation by electron impact. For the n = 2 case we have observed both stabilization and destabilization of the π* resonance, that is associated with the hydrogen bond donor or acceptor role of the water molecules in the complexes. For the n = 3 case, preliminary static-exchange results show the stabilization of the π* state. We propose an explanation of the stabilization/destabilization of the π* state in terms of the polarization of the solute due to the surrounding water molecules and the net charge in the solute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on magnetohydrodynamic (MHD) mixed convection flow of electrically conducting fluids enclosed in simple 1D and 2D geometries in steady periodic regime. In particular, in Chapter one a short overview is given about the history of MHD, with reference to papers available in literature, and a listing of some of its most common technological applications, whereas Chapter two deals with the analytical formulation of the MHD problem, starting from the fluid dynamic and energy equations and adding the effects of an external imposed magnetic field using the Ohm's law and the definition of the Lorentz force. Moreover a description of the various kinds of boundary conditions is given, with particular emphasis given to their practical realization. Chapter three, four and five describe the solution procedure of mixed convective flows with MHD effects. In all cases a uniform parallel magnetic field is supposed to be present in the whole fluid domain transverse with respect to the velocity field. The steady-periodic regime will be analyzed, where the periodicity is induced by wall temperature boundary conditions, which vary in time with a sinusoidal law. Local balance equations of momentum, energy and charge will be solved analytically and numerically using as parameters either geometrical ratios or material properties. In particular, in Chapter three the solution method for the mixed convective flow in a 1D vertical parallel channel with MHD effects is illustrated. The influence of a transverse magnetic field will be studied in the steady periodic regime induced by an oscillating wall temperature. Analytical and numerical solutions will be provided in terms of velocity and temperature profiles, wall friction factors and average heat fluxes for several values of the governing parameters. In Chapter four the 2D problem of the mixed convective flow in a vertical round pipe with MHD effects is analyzed. Again, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the wall. A numerical solution is presented, obtained using a finite element approach, and as a result velocity and temperature profiles, wall friction factors and average heat fluxes are derived for several values of the Hartmann and Prandtl numbers. In Chapter five the 2D problem of the mixed convective flow in a vertical rectangular duct with MHD effects is discussed. As seen in the previous chapters, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the four walls. The numerical solution obtained using a finite element approach is presented, and a collection of results, including velocity and temperature profiles, wall friction factors and average heat fluxes, is provided for several values of, among other parameters, the duct aspect ratio. A comparison with analytical solutions is also provided, as a proof of the validity of the numerical method. Chapter six is the concluding chapter, where some reflections on the MHD effects on mixed convection flow will be made, in agreement with the experience and the results gathered in the analyses presented in the previous chapters. In the appendices special auxiliary functions and FORTRAN program listings are reported, to support the formulations used in the solution chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of plasma technologies is growing both in the academic and in the industrial fields. Nowadays, a great interest is focused in plasma applications in aeronautics and astronautics domains. Plasma actuators based on the Magneto-Hydro-Dynamic (MHD) and Electro- Hydro-Dynamic (EHD) interactions are potentially able to suitably modify the fluid-dynamics characteristics around a flying body without utilizing moving parts. This could lead to the control of an aircraft with negligible response time, more reliability and improvements of the performance. In order to study the aforementioned interactions, a series of experiments and a wide number of diagnostic techniques have been utilized. The EHD interaction, realized by means of a Dielectric Barrier Discharge (DBD) actuator, and its impact on the boundary layer have been evaluated by means of two different experiments. In the first one a three phase multi-electrode flat panel actuator is used. Different external flow velocities (from 1 to 20m/s) and different values of the supplied voltage and frequency have been considered. Moreover a change of the phase sequence has been done to verify the influence of the electric field existing between successive phases. Measurements of the induced speed had shown the effect of the supply voltage and the frequency, and the phase order in the momentum transfer phenomenon. Gains in velocity, inside the boundary layer, of about 5m/s have been obtained. Spectroscopic measurements allowed to determine the rotational and the vibrational temperature of the plasma which lie in the range of 320 ÷ 440°K and of 3000 ÷ 3900°K respectively. A deviation from thermodynamic equilibrium had been found. The second EHD experiment is realized on a single electrode pair DBD actuator driven by nano-pulses superimposed to a DC or an AC bias. This new supply system separates the plasma formation mechanism from the acceleration action on the fluid, leading to an higher degree of the control of the process. Both the voltage and the frequency of the nano-pulses and the amplitude and the waveform of the bias have been varied during the experiment. Plasma jets and vortex behavior had been observed by means of fast Schlieren imaging. This allowed a deeper understanding of the EHD interaction process. A velocity increase in the boundary layer of about 2m/s had been measured. Thrust measurements have been performed by means of a scales and compared with experimental data reported in the literature. For similar voltage amplitudes thrust larger than those of the literature, had been observed. Surface charge measurements led to realize a modified DBD actuator able to obtain similar performances when compared with that of other experiments. However in this case a DC bias replacing the AC bias had been used. MHD interaction experiments had been carried out in a hypersonic wind tunnel in argon with a flow of Mach 6. Before the MHD experiments a thermal, fluid-dynamic and plasma characterization of the hypersonic argon plasma flow have been done. The electron temperature and the electron number density had been determined by means of emission spectroscopy and microwave absorption measurements. A deviation from thermodynamic equilibrium had been observed. The electron number density showed to be frozen at the stagnation region condition in the expansion through the nozzle. MHD experiments have been performed using two axial symmetric test bodies. Similar magnetic configurations were used. Permanent magnets inserted into the test body allowed to generate inside the plasma azimuthal currents around the conical shape of the body. These Faraday currents are responsible of the MHD body force which acts against the flow. The MHD interaction process has been observed by means of fast imaging, pressure and electrical measurements. Images showed bright rings due to the Faraday currents heating and exciting the plasma particles. Pressure measurements showed increases of the pressure in the regions where the MHD interaction is large. The pressure is 10 to 15% larger than when the MHD interaction process is silent. Finally by means of electrostatic probes mounted flush on the test body lateral surface Hall fields of about 500V/m had been measured. These results have been used for the validation of a numerical MHD code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).