996 resultados para corn grain yield


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are few studies on the interaction between soybean plant density and nitrogen fertilization. This research aimed to assess the effect of mineral nitrogen associated to different plant densities on yield, yield components and oil and protein concentrations of soybean grains. Two experiments were conducted in the 2013/2014 and 2014/2015 growing seasons, with randomized complete block design, in a split plots scheme, with six replications. Four sowing densities (150, 300, 440 and 560 thousand viable seeds; ha-1) were allocated in the plots, and two nitrogen levels (0 and 45 kg N; ha-1, applied at V2, using ammonium sulfate) were allocated in the subplots. There was no interaction between soybean plant density and the application of mineral nitrogen on yield, yield components and oil and protein concentrations in soybean grains. Higher plant population reduced the number of pods per plant and the contribution of branch sinks to the grain yield, but the effects on yield differed among the growing seasons. The mineral nitrogen fertilization did not increase yield and protein and oil concentrations in the grains, thus it was unnecessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avaliaram-se os efeitos de dietas com níveis crescentes de milho em grão moído (0, 22, 37 e 49% na MS) em substituição ao feno de coast-cross mantendo-se diferentes relações proteína:carboidratos não-fibrosos (PB:CNF = 1,01; 0,39; 0,33 e 0,27) sobre o metabolismo ruminal de búfalos. Utilizaram-se quatro búfalos fistulados no rúmen, mantidos em delineamento quadrado latino 4 × 4, para a coleta de amostras do líquido ruminal, colhidas em cada período experimental (de 28 dias) nos tempos 0, 2, 4 e 8 horas após a alimentação. Em geral, os bubalinos apresentaram boa capacidade tamponante no rúmen, com pH médio alto (6,70) e aumento da ingestão de milho em grão moído. O acréscimo nos níveis de milho na dieta promoveu aumento da produção de ácido butírico. Somente a dieta com 49% de milho promoveu melhor fermentação ruminal, com menor propoção de ácidos acético:propiônico. A relação PB:CNF de 1,01 indica deficiência de energia da dieta disponível para microrganismos no rúmen ao longo do dia, enquanto dietas com PB:CNF entre 0,39 e 0,27 promovem fermentações ruminais semelhantes, o que indica sincronismo na utilização de nitrogênio e energia pelos microrganismos no rúmen nessas condições.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological nitrogen fixation (BNF) constitutes a valuable source of this nutrient for the common bean Phaseolus vulgaris L and cowpea Vigna unguiculata (L.) Walp., being its avaibility affected by mineral N in the soil solution. The objectives of this work were to evaluate the effects of nitrogen rate, as urea, on symbiotic fixation of N(2) in common bean and cowpea plants, using the isotopic technique, and quantifying the relative contributions of N sources symbiotic N(2) fixation, soil native nitrogen and urea N on the growth of the common bean and cowpea. Non nodulating soybean plants were used as standard. The research was carried out in greenhouse, using pots with 5 kg of soil from a Typic Haplustox (Dystrophic Red Yellow Latosol). The experimental design was completely randomized blocks, with 30 treatments and three replications, arranged in 5x3x2 factorial outline. The treatments consisted of five N rates: 2, 15, 30, 45 and 60 mg N kg(-1) soil; three sampling times: 23, 40 and 76 days after sowing (DAS) and two crops: common bean and cowpea. The BNF decreased with increase N rates, varying from 81.5% to 55.6% for cowpea, and from 71.9% to 55.1% for common bean. The symbiotic N(2) fixation in cowpea can substitute totally the nitrogen fertilization. The nitrogen absorption from soil is not affected by nitrogen fertilizer rate. The N recovery from fertilizer at 76 DAS was of 60.7% by common bean, and 57.1% by cowpea. The symbiotic association in common bean needs the application of a starting dose (40 kg N ha(-1)) for economically acceptable yields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little information is available on the agronomic effectiveness of calcined nonapatite phosphate rock (PR) sources containing crandallite minerals in the form of Ca-Fe-Al-P for flooded and upland rice (Oryza sativa L.). We conducted laboratory and greenhouse studies to (i) characterize the mineralogical composition, (ii) investigate the solubility and dissolution behavior, and (iii) evaluate the agronomic effectiveness of two nonapatite PR sources (Juquia and Sapucaia) from Brazil and compared them with (i) a highly reactive Gafsa PR (Tunisia) containing apatite in the form of Ca-P and (ii) a reference water-soluble triple superphosphate (TSP) for flooded and upland rice. After calcination at 500 degrees C for 4 h, the solubility of Juquia PR and Sapucaia PR in neutral ammonium citrate (NAC) significantly increased from almost nil to a maximum of 39.3 and 114 g P kg(-1), respectively. X-ray diffraction showed that crystalline crandallite mineral was transformed to an amophorus form after calcination. The solubility behavior of the two calcined PR sources followed the same trend as Gafsa PR, that is, P release decreased with increasing equilibrium pH in the 0.01 M KCl solution (PH 3.0-8.0). At PH 3, the solubility followed: Gafsa PR > calcined Sapucaia PR > calcined Juquia PR. No P release was detected from any of the PR sources at pH >= 5.0 in the solution, indicating the Ca-P characteristic of the Ca-Fe-Al-P mineral controlled P dissolution of the calcined PR. Without calcination, both Juquia PR and Sapucaia PR were totally ineffective for upland rice grown on a Hiwassee clay loam (fine, kaolinitic, thermic Rhodic Kanhapludult) with pH 5.4 whereas a significant P response was observed with the calcined PR samples. For flooded rice grown on Hiwassee soil, the calcined Juquia PR and Sapucaia PR were 66 and 72%, respectively, as effective as TSP in increasing rice grain yield whereas Gafsa PR was ineffective. For upland rice grown on the unlimed soil, Gafsa PR was as effective as TSP in increasing rice grain yield whereas calcined Juquia PR and Sapucaia PR were 89 and 83% of TSP. The effectiveness of Gafsa PR was reduced to 0% after the soil was limed to pH 7.0 whereas the two calcined PR sources were reduced to 49% of TSP. Soil available P extracted by iron oxide impregnated filter paper (Pi test) or anion-exchange resin after rice harvest correlated well with P uptake by rice grain for flooded and upland rice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maize (Zea mays L.) is a very important cereal to world-wide economy which is also true for Brazil, particularly in the South region. Grain yield and plant height have been chosen as important criteria by breeders and farmers from Santa Catarina State (SC), Brazil. The objective of this work was to estimate genetic-statistic parameters associated with genetic gain for grain yield and plant height, in the first cycle of convergent-divergent half-sib selection in a maize population (MPA1) cultivated by farmers within the municipality of Anchieta (SC). Three experiments were carried out in different small farms at Anchieta using low external agronomic inputs; each experiment represented independent samples of half-sib families, which were evaluated in randomized complete blocks with three replications per location. Significant differences among half-sib families were observed for both variables in all experiments. The expected responses to truncated selection of the 25% better families in each experiment were 5.1, 5.8 and 5.2% for reducing plant height and 3.9, 5.7 and 5.0% for increasing grain yield, respectively. The magnitudes of genetic-statistic parameters estimated evidenced that the composite population MPA1 exhibits enough genetic variability to be used in cyclical process of recurrent selection. There were evidences that the genetic structure of the base population MPA1, as indicated by its genetic variability, may lead to expressive changes in the traits under selection, even under low selection pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F(2) population. Two-hundred and fifty six F(2) plants were genotyped with 143 microsatellite markers and their F(2:3) progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance x dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Causal inference methods - mainly path analysis and structural equation modeling - offer plant physiologists information about cause-and-effect relationships among plant traits. Recently, an unusual approach to causal inference through stepwise variable selection has been proposed and used in various works on plant physiology. The approach should not be considered correct from a biological point of view. Here, it is explained why stepwise variable selection should not be used for causal inference, and shown what strange conclusions can be drawn based upon the former analysis when one aims to interpret cause-and-effect relationships among plant traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to evaluate the average behavior, the genotype x environment (GxE), adaptability and stability of seven soybean cultivars at three sowing dates in Uberlandia-MG. The tests were conducted at Capim Branco Farm, belonging to the Federal University of Uberlandia. Sowing was held on october 29 (1st season), november 24 (2nd season) and december 17 (3rd season) 2007. The experimental design was a randomized, seven genotypes (UFUS Xavante, UFUS Riqueza, UFUS Guarani, UFUS Milionaria, Msoy 8001, Msoy 8411 and Msoy 8914) with three replications in each of three sowing dates. Means were compared by Tukey test at 5% probability. Analysis of adaptability and phenotypic stability of genotypes was performed using the Eberhart and Russell (1966), Lin and Binns (1988) modified by Carneiro (1998) and centroid (NASCIMENTO et al., 2009). For grain yield, the cultivar UFUS Xavante was classified as specific adaptability to environment and high stability. The other cultivars were classified as being of general adaptability. For oil content, the cultivars Msoy 8914 and UFUS Xavante behaved as high stability and was classified as having high adaptability. For the character content of protein, all cultivars behaved as wide adaptability and low stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L,) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d(-1)). but significant differences occurred between sowings, The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d(-1)). Using the linear increase in HI to predict grain yield requires predictions of the duration from anthesis to the onset of linear HI increase (lag phase) and the cessation of linear RT increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed.