848 resultados para coherent optical BPSK homodyne transmission
Resumo:
X-ray phase imaging with illumination by a partially coherent source with a setup similar to in-line holography is considered. Using the optical transform function, we consider the effects of partial coherence on this x-ray phase imaging for a weak phase object. The optimal contrast and the resolution of phase imaging are analyzed. As the coherence decreases, the imaging contrast and the optimal contrast frequency decrease, and the resolution degrades. It is shown that this contrast-enhanced phase-imaging method can be regarded as a linear bandpass filter and that the bandwidth and the image contrast are changeable. The frequency property of the imaging system can be improved if an incoherent x-ray source with the proper shape is used. (C) 1999 Optical Society of America.
Resumo:
This paper has observed linewidth narrowing of dark states in rubidium cell by using the Hanle configuration. The reduction of the coherent resonance width under the transition of Rb-87 F-g = 1 -> F-e = 0 is observed and the qualitative explanation about its mechanism is presented. Multiple subnatural width dips are obtained with a linearly polarized laser beam for the transition of Rb-87 F-g = 0, 1, 2. The feature of negative and positive slope, namely dispersionlike feature, is observed in the transmitted light.
Resumo:
The relationship between transmission area of an object imaged and the visibility of correlated imaging is investigated in a lensless system. We show that they are not in simple inverse proportion, as usually depicted. The changes of the visibility will be quite different when the transmission area is varied by different manners, which may motivate people to seek a new understanding about the influence factors of the visibility. (C) 2007 Optical Society of America
Resumo:
We report the experimental generation of a high-quality partially coherent dark hollow beam (DHB) by coupling a partially coherent beam into a multimode fiber (MMF) with a suitable incidence angle. The interference experiment of the generated partially coherent DHB passing through double slits is demonstrated. It is found that the coupling efficiency of the MMF, the quality, and the coherence of the generated partially coherent DHB are closely controlled by the coherence of the input beam. (c) 2008 Optical Society of America.
Resumo:
Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.
Resumo:
Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.
Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.
However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.
Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.
Resumo:
A theoretical study of the behaviour of partially coherent beams propagating through oceanic turbulence has been performed. Based on the previously developed knowledge of beam spreading of a partially coherent beam in the atmosphere and the spatial power spectrum of the refractive index of ocean water, we study the normalized root-mean-square width of a partially coherent beam on propagation through oceanic turbulence and its turbulence distance which may be a measure of turbulence resistance. Our analysis indicates that the behaviour of partially coherent beams on propagation may be described by the rate of dissipation of the mean-squared temperature chi(T) and that of salinity chi(S). In terms of a quantity w that defines the contributions of the temperature and salinity distributions to the distribution of the refractive index, chi(S) could be written as a function of chi(T) and w. Therefore, the behaviour of partially coherent beams on propagation can be characterized only by chi(T) for a given w. The results are shown for curved surfaces, from which one can see that partially coherent beams exhibit robust turbulence resistance when the water volume has a smaller chi(T).
Resumo:
As feature size decreases, especially with the use of resolution enhancement technique, requirements for the coma aberrations in the projection lenses of the lithographic tools have become extremely severe. So, fast and accurate in situ measurement of coma is necessary. In the present paper, we present a new method for characterizing the coma aberrations in the projection lens using a phase-shifting mask and a transmission image sensor. By measuring the image positions at multiple NA and partial coherence settings, we are able to extract the coma aberration. The simulation results show that the accuracy of coma measurement increases approximately 20% compared to the previous straightforward measurement technique. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We describe the design, fabrication, and excellent performance of an optimized deep-etched high-density fused-silica transmission grating for use in dense wavelength division multiplexing (DWDM) systems. The fabricated optimized transmission grating exhibits an efficiency of 87.1% at a wavelength of 1550 nm. Inductively coupled plasma-etching technology was used to fabricate the grating. The deep-etched high-density fused-silica transmission grating is suitable for use in a DWDM system because of its high efficiency, low polarization-dependent loss, parallel demultiplexing, and stable optical performance. The fabricated deep-etched high-density fused-silica transmission gratings should play an important role in DWDM systems. (c) 2006 Optical Society of America.
Resumo:
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.
Resumo:
An experimental investigation of the optical properties of β–gallium oxide has been carried out, covering the wavelength range 220-2500 nm.
The refractive index and birefringence have been determined to about ± 1% accuracy over the range 270-2500 nm, by the use of a technique based on the occurrence of fringes in the transmission of a thin sample due to multiple internal reflections in the sample (ie., the "channelled spectrum" of the sample.)
The optical absorption coefficient has been determined over the range 220 - 300 nm, which range spans the fundamental absorption edge of β – Ga2O3. Two techniques were used in the absorption coefficient determination: measurement of transmission of a thin sample, and measurement of photocurrent from a Schottky barrier formed on the surface of a sample. Absorption coefficient was measured over a range from 10 to greater than 105, to an accuracy of better than ± 20%. The absorption edge was found to be strongly polarization-dependent.
Detailed analyses are presented of all three experimental techniques used. Experimentally determined values of the optical constants are presented in graphical form.
Resumo:
We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
abstract {We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. © 2007 Society of Photo-Optical Instrumentation Engineers.}
Resumo:
We analyze the electromagnetic spatital distributions and address an important issue of the transmission properties of spherical transverse-electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered hollow metallic waveguide in detail. Explicit analytical expressions for the spatital distributions of electromagnetic field components, attenuation constant, phase constant and wave impedance are derived. Accurate eigenvalues obtained numerically are used to study the dependences of the transmission properties on the taper angle, the mode as well as the length of the waveguide. It is shown that all modes run continuously from a propagating through a transition to an evanescent region and the value of the attenuation increases as the distance from the cone vertex and the cone angle decrease. A strict distinction between pure propagating and pure evanescent modes cannot be achieved. One mode after the other reaches cutoff in the tapered hollow metallic waveguide as the distance from the cone vertex desreases. (C) 2008 Optical Society of America