378 resultados para cladocera
Resumo:
Made-up set; title supplied.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The Ráckeve-Soroksár Danube has a great importance as it is the second largest side arm in the Hungarian section of the river Danube and many demands of exploitation are expected. The aim of this study is to analyse the spatial and temporal changes of the zooplankton (Copepoda, Cladocera) community in this river arm, moreover the similarity patterns of zooplankton communities in different Hungarian water bodies are presented in special consideration of the Ráckeve-Soroksár Danube. Basically this study is based on data from literature, however our data are also used for compiling the database for the spatio-temporal changes of the Ráckeve-Soroksár Danube. We put emphasis on the three typical sections of the side arm, as these are stressed due to hydromorphological aspects, but creating artificial borders are objectionable as well. The results show that both spatial and temporal changes are evident, what is more, the stagnant water character of the side arm should be underlined.
Resumo:
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and 100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-μm-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3× to 15× from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30% and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem.
Resumo:
The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.