384 resultados para arbuscular-mycorrhizal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood production represents a large but variable fraction of gross primary production (GPP) in highly productive Eucalyptus plantations. Assessing patterns of carbon (C) partitioning (C flux as a fraction of GPP) between above- and belowground components is essential to understand mechanisms driving the C budget of these plantations. Better knowledge of fluxes and partitioning to woody and non-woody tissues in response to site characteristics and resource availability could provide opportunities to increase forest productivity. Our study aimed at investigating how C allocation varied within one apparently homogeneous 90 ha stand of Eucalyptus grandis (W. Hill ex Maiden) in Southeastern Brazil. We assessed annual above-ground net primary production (ANPP: stem, leaf, and branch production) and total belowground C flux (TBCF: the sum of root production and respiration and mycorrhizal production and respiration), GPP (computed as the sum of ANPP, TBCF and estimated aboveground respiration) on 12 plots representing the gradient of productivity found within the stand. The spatial heterogeneity of topography and associated soil attributes across the stand likely explained this fertility gradient. Component fluxes of GPP and C partitioning were found to vary among plots. Stem NPP ranged from 554 g C m(-2) year(-1) on the plot with lowest GPP to 923 g C m(-2) year(-1) on the plot with highest GPP. Total belowground carbon flux ranged from 497 to 1235 g C m(-2) year(-1) and showed no relationship with ANPP or GPP. Carbon partitioning to stem NPP increased from 0.19 to 0.23, showing a positive trend of increase with GPP (R-2 = 0.29, P = 0.07). Variations in stem wood production across the gradient of productivity observed at our experimental site were a result of the variability in C partitioning to different forest system components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations were performed during the years 1999 to 2001 on a limed and unlimed plot within a high-elevated sessile oak forest. The oak forest (with 90 years old European beech at the understorey) was 170 to 197 years old. It is located at forest district Merzalben, location 04/0705, which is situated in the Palatinate Forest in south-west Germany. Liming was performed in December 1988 when 6 tons/ha of powdered Dolomite were brought up by the forestry department. Liming was performed to counteract the effects of soil acidification (pH(H2O) at Horizon A (0-10 cm): 3.9), which is induced by long-term (anthropogenic) acidic cloud cover and precipitation. Potentially toxic Al3+ ions, which become solubilized below pH 5, were suspected to be responsible for forest dieback and sudden death of the mature oaks. The most logical entry point for these toxic ions was suspected to occur in the highly absorptive region of the ectomycorrhizae (fungal covered root tips). However, the diversity and abundance of oak-ectomycorrhizal species and their actual roles in aluminum translocation (or blockage) were unknown. It was hypothesized that the ectomycorrhizae of sessile oaks in a limed forest would exhibit greater seasonal diversity and abundance with less evidence of incorporated aluminum than similar oak ectomycorrhizae from unlimed soils. To test this hypothesis, 12 oaks in the limed plot and 12 in an adjacent unlimed plot were selected. Each spring and fall for 2 years (1999 & 2000), 2 sets of soil cylinders (9.9 cm dia.) were extracted from Horizon A (0-10 cm), Horizon B (30-40 cm) and Horizon C (50-60 cm depth) at a distance of 1 meter from each tree base. Roots were extracted from each probe by gentle sieving and rinsing. Soil samples were retained for pH (H2O, CaCl2, and KCl) and moisture analysis. One set of roots was sorted by size and air-dried for biomass analysis. The finest mycorrhizal roots of this set were used for bound and unbound (cytosolic) mineral [Al, Ca, Mg, K, Na, Mn, S, Zn, Fe, Cd and Pb] analysis (by Landwirtschaftliche Untersuchungs- und Forschungsanstalt Rheinland Palatinate (LUFA)). Within 7 days of collection, the mycorrhizal tips from the second set of probes were excised, sorted, identified (using Agerer’s Color Atlas), counted and weighed. Seasonal diversity and abundance was characterized for 50 of the 93 isolates. The location and relative abundance of Al within the fungal and root cell walls was characterized for 68 species using 0.01% Morin dye and fluorescence microscopy. Morin complexes with Al to produce an intense yellow fluorescence. The 4 most common species (Cenococcum geophilum, Quercirhiza fibulocsytidiata, Lactarius subdulcis, Piceirhiza chordata) were prepared for bound Al, Ca, Fe and K mineral analysis by LUFA. The unlimed and limed plots were then compared. Only 46 of the 93 isolated ectomycorrhizal species had been previously associated with oaks in the literature. Mycorrhizal biomass was most abundant in Horizon A, declining with depth, drought and progressive soil acidification. Mycorrhizae were most diverse (32 species) in the limed plot, but individual species abundance was low (R Selection) in comparison to the unlimed plot, where there were fewer species (24) but each species present was abundant (K Selection). Liming increased diversity and altered dominance hierarchy, seasonal distributions and succession trends of ectomycorrhizae at all depths. Despite an expected reduction in Al content, the limed ectomycorrhizae both qualitatively (fluorescence analysis) and quantitatively (mineral analysis) contained more bound Al, especially so in Horizon A. The Al content qualitatively and quantitatively increased with depth in the unlimed and limed plots. The bound Al content fluctuated between 4000-and 20000 ppm while the unbound component was consistently lower (4 -14 ppm). The relative amount of unbound Al declined upon liming implying less availability for translocation to the crown area of the trees. This correspouds with the findings of good crown appearance and lower tree mortality in the limed zone. Each ectomycorrhizal species was unique in its ability to block, sequester (hold) or translocate Aluminum. In several species, Al uptake varied with changes in moisture, pH, depth and liming. According to the fluorescence study, about 48% of the isolated ectomycorrhizal species blocked and/or sequestered (held) Al in their mantle and/or Hartig net walls, qualitatively lowering bound Al in the adjacent root cell walls. Generally, if Al was more concentrated in the fungal walls, it was less evident in the cortex and xylem and conversely, if Al was low or absent from the fungal walls it was frequently more evident in the cortex and xylem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il lavoro svolto durante questa tesi di dottorato pone le basi per lo sviluppo di nuove biotecnologie della micorrizazione di piante forestali con tartufi pregiati ed in particolare con Tuber magnatum. Durante questa tesi è stato possibile isolare e mantenere in coltura pura il micelio di T. magnatum, ad ottenere e descrivere le sue micorrize e quelle di altri tartufi “bianchi” (T. oligospermum, T. borchii) e a seguire l’evoluzione del micelio nel suolo utilizzando la tecnica della real time PCR. Sono stati disegnati primer specie specifici in grado di identificare T. oligospermum ed è stata verificata la possibiltà di utilizzare questi primers in PCR multiplex con quelli specifici di T. magnatum e di T. borchii già presenti in bibliografia, al fine di “scovare” sia frodi nella commercializzaione degli ascomi sia eventuali contaminazioni nelle piante micorrizate. Per migliorare lo sviluppo miceliare di tartufo abbiamo si è cercato di migliorare il mezzo nutritivo per la crescita del micelio utilizzando: fonti di carbonio diverse, estratti radicali di nocciolo e singole frazioni separate dagli stessi. Infine sono stati sviluppati protocolli di crioconservazione per miceli di tartufo. Gli estratti radicali sono in grado di stimolare le crescita miceliare del tartufo modello T. borchii e dimodificarne la morfologia ifale. Questo risultati sono stati confermati anche dall’aumento dell’espressione di geni CDC42 e Rho-GDI, due geni legati alla crescita apicale polarizzata delle ife dei funghi filamentosi. Inoltre è stato dimostrato che il mantenimento in coltura per numerosi anni dei miceli di tartufo provoca una perdita della capacità d’infettare le radici delle piante e quindi il loro potenziale utilizzo sia a scopo sperimentale sia a scopo colturale. Questo pone in risalto l’importanza della conservazione a lungo termine del materiale biologico a disposizione ed è stato dimostrato che la crioconservazione è applicabile con successo anche alle specie del genere Tuber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Where one or a few tree species reach local high abundance, different ecological factors may variously facilitate or hinder their regeneration. Plant pathogens are thought to be one of those possible agents which drive intraspecific density-dependent mortality of tree seedlings in tropical forests. Experimental evidence for this is scarce, however. In an African rain forest at Korup, we manipulated the density of recently established seedlings (~5–8 wk old; low vs. high-density) of two dominant species of contrasting recruitment potential, and altered their exposure to pathogens using a broad-spectrum fungicide. Seedling mortality of the abundantly recruiting subcanopy tree Oubanguia alata was strongly density-dependent after 7 mo, yet fungicide-treated seedlings had slightly higher mortality than controls. By contrast, seedling mortality of the poorly recruiting large canopy-emergent tree Microberlinia bisulcata was unaffected by density or fungicide. Ectomycorrhizal colonization of M. bisulcata was not affected by density or fungicide either. For O. alata, adverse effects of fungicide on its vesicular arbuscular mycorrhizas may have offset any possible benefit of pathogen removal. We tentatively conclude that fungal pathogens are not a likely major cause of density dependence in O. alata, or of early post-establishment mortality in M. bisulcata. They do not explain the latter's currently very low recruitment rate at Korup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This broad range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees. The critical loads approach is an ecosystem assessment tool with great potential to simplify complex scientii c information and effectively communicate with the policy community and the public. This synthesis represents the i rst comprehensive assessment of empirical critical loads of N for ecoregions across the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North America's most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naive native mutualists in the introduced range and indirectly suppress the plants that rely on them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disentangling biotic and abiotic drivers of wild mushroom fruiting is fraught with difficulties because mycelial growth is hidden belowground, symbiotic and saprotrophic supply strategies may interact, and myco-ecological observations are often either discontinuous or too short. Here, we compiled and analyzed 115 417 weekly fungal fruit body counts from permanent Swiss inventories between 1975 and 2006. Mushroom fruiting exhibited an average autumnal delay of 12 days after 1991 compared with before, the annual number of fruit bodies increased from 1801 to 5414 and the mean species richness doubled from 10 to 20. Intra- and interannual coherency of symbiotic and saprotrophic mushroom fruiting, together with little agreement between mycorrhizal yield and tree growth suggests direct climate controls on fruit body formation of both nutritional modes. Our results contradict a previously reported declining of mushroom harvests and propose rethinking the conceptual role of symbiotic pathways in fungi-host interaction. Moreover, this conceptual advancement may foster new cross-disciplinary research avenues, and stimulate questions about possible amplifications of the global carbon cycle, as enhanced fungal production in moist mid-latitude forests rises carbon cycling and thus increases greenhouse gas exchanges between terrestrial ecosystems and the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

•Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. •We followed symbiotic carbon (C)–N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. •We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. •These results were tested in a model for C–N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the C(organic)/N(total) ration both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Bokashi (B, a fermented compost), slow-release fertilizers (SRFs) and their combined application on mycorrhizal colonization (MC), soil invertase, cellulase, acid (AcP) and alkaline (AlP) phosphatases activities and maize (Zea mays L.) yield was investigated in terrace (TS) and valley (VS) soils in Oaxaca, Mexico. A complete randomized design, seven fertilizer treatments and four replications were used: unamended control (C); conventional fertilization (90-46-00 NPK) (CF); B; SRF1 (Multigro 6®, 21-14-10 NPK); SRF2 (Multigro 3®, 24-05-14 NPK); B+SRF1; B+SRF2. Highest root colonization percentage: CF in VS, and SRF2 in TS. Highest extraradical mycelium length: B, B+SRF1, CF in VS, and B+SRF1 in TS. In both soils, B increased the spore number. Highest AcP activity: B, SRF2 in VS, and B+SRF1, B+SRF2 in TS. Highest AlP activity: B+SRF1, CF in VS, and C in TS. Highest invertase activity: B+SRF1, SRF2, CF in VS, and B in TS. Grain yield only increased with B in VS. The significant interaction soil type × fertilizer treatment for the majority of the biological soil properties analyzed suggests that MC and soil enzyme activity response to fertilization was influenced by soil type. Bokashi, alone or combined with SRFs improves biological soil fertility in maize fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La encina (Quercus ilex L.) es una de las especies forestales mediterráneas más importantes. Constituye gran parte del estrato arbóreo de dehesas o montados, produce bellota como alimento del ganado y establece simbiosis con hongos micorrizógenos de gran valor económico. La encina está considerada como una especie recalcitrante en términos de conservación de semillas y capacidad morfogénica, lo que dificulta los programas de conservación de recursos genéticos y la mejora de la especie. La propagación vegetativa es una potente herramienta de los programas de mejora, por lo que es preciso desarrollar protocolos de regeneración somática en encina. La embriogénesis somática está considerada como la modalidad más adecuada de regeneración basada en técnicas de cultivo de tejidos vegetales utilizada en biotecnología forestal. Este trabajo se centra en el estudio de determinados aspectos de la embriogénesis somática para la regeneración clonal de encinas adultas. La memoria de esta tesis se ha dividido en capítulos que se corresponden con diferentes aspectos del sistema embriogénico. La embriogénesis somática se indujo en tegumentos maternos de óvulos en desarrollo procedentes de bellotas inmaduras de encinas adultas. A pesar de las bajas frecuencias de inducción, las líneas embriogénicas generadas se amplificaron mediante embriogénesis secundaria observándose cierta pérdida de la capacidad de diferenciación con el tiempo. Tanto el genotipo como la formulación del medio de cultivo influyeron en la respuesta embriogénica, concluyendo que la formulación de macronutrientes de Schenk y Hildebrant del medio sin reguladores de crecimiento fue la combinación más efectiva en la inducción. Los resultados sugirieron la existencia de una ventana en el desarrollo del óvulo más sensible a la inducción. El genotipo in[luyó en la capacidad proliferativa de los cultivos y en la conversión de los embriones somáticos, que se incrementó suplementando el medio con ácido indol-3-butírico y 6-benciladenina. El cultivo en medio líquido de líneas embriogénicas en condiciones de inmersión transitoria incrementó el crecimiento, dependiendo del genotipo, con respecto al cultivo en medio semisólido. Sin embargo, no mejoró la capacidad de diferenciar embriones cotiledonares aislados. Se estableció un protocolo de inicio y mantenimiento de cultivos en suspensión para varias líneas embriogénicas mediante inoculación en alta densidad de agregados embrionarios procedentes del medio semisólido. Para evitar la pérdida de vigor y la capacidad morfogénica debida al cultivo prolongado se desarrolló un protocolo de crioconservación de líneas embriogénicas mediante vitrificación. Al determinar la influencia de los agentes crioprotectores antes y después de su inmersión en nitrógeno líquido se concluyó que las respuestas de capacidad de crecimiento y de diferenciación del material embriogénico son independientes, además de estar bajo influencia del genotipo y el tipo de material crioconservado. La combinación de sacarosa y PVS2 previa a la inmersión en nitrógeno líquido proporcionó la mayor tasa de recuperación. Cuando las líneas fueron crioconservadas 30 días la capacidad de diferenciación se perdió en todas ellas. El análisis de SSR detectó variación somaclonal en el material crioconservado a corto plazo. SSR y RAPD mostraron importantes diferencias genéticas entre los árboles donantes y el material embriogénico que dependieron del genotipo. El grado de detección dependió del marcador empleado. Ambos marcadores revelaron baja inestabilidad intraclonal. Los RAPD revelaron variación genética intra-individuo en las encinas donantes. Se discuten la variación genética pre-existente en encina, su aparición durante las primeras fases de la inducción de embriogénesis, y la presencia de tejidos provenientes de la fertilización en el explanto materno. Esto hace preciso definir la identidad genética del material donante y acometer ensayos de detección precoz de variación somaclonal. ABSTRACT Holm oak (Quercus ilex L.) is one of the most important Mediterranean forest species. It conforms the tree layer of dehesas or montados, it produces acorns to feed the livestock and it establishes symbiosis with profitable mycorrhizal fungi. Holm oak is considered as recalcitrant species in terms of seed conservation and morphogenic capacities, which complicates the development of genetic conservation and improvement programs. Vegetative propagation is one of the mightiest tools for breeding programs therefore; developing protocols for clonal regeneration of holm oak is essential. Somatic embryogenesis is considered the best tissue culture-based way of plant regeneration in forest biotechnology. The present study is focused on the study of certain aspects of somatic embryogenesis for clonal regeneration of mature holm oak. This thesis manuscript is divided into several chapters that match with different aspects of the embryogenic system. Somatic embryogenesis induction was achieved on maternal teguments of developing ovules from immature acorns of adult holm oak trees. Despite the low induction frequencies, the generated embryogenic lines were amplified by secondary embryogenesis. A decline in the differentiation capacity over time was also observed. It was concluded that both genotype and culture media formulation influenced the embryogenic response, being the Schenk and Hildebrandt´s macronutrients formulation from culture medium and the lack of plant growth regulators the most effective combination for the induction of the embryogenic response. It has been suggested the existence of a developmental window in which ovules are prone to induction. Genotype influenced the proliferation capacity and the plant conversion of somatic embryos, which was also favoured by the presence of indol-3-butyric acid and 6-bencyladenine. The use of temporary immersion systems as proliferation in liquid culture of the embryogenic lines increased the growth depending on genotype, when compared to semisolid cultures. However, it did not improve the differentiation of single cotyledonary embryos. A protocol for the initiation and maintenance of embryogenic suspension cultures was established for several embryogenic lines with highly dense inoculi of embryogenic clusters from proliferating semisolid cultures. In order to avoid the loss of vigour and morphogenic ability of embryogenic lines due to prolonged cultures, a cryopreservation protocol for embryogenic lines of holm oak has been developed. During the determination of the influence of cryoprotective agents on the growth and differentiation capacities before and after liquid nitrogen immersion, it was concluded that both responses were independent from each other and also under the influence of genotype and the type of cryopreserved material. The combination of sucrose and PVS2 prior liquid nitrogen immersion provided higher recovery rates. When the same embryogenic lines were cryopreserved for 30 days, none was able to differentiate. The SSRs analysis of the short-term cryopreserved material detected somaclonal variation. Both SSR and RAPD markers showed high sensitivity to detect genetic differences between the donor trees and the generated embryogenic material. Nevertheless, the degree of instability detection depended on the marker. The SSR analysis indicated a relationship between genotype, the studied loci and the located polymorphisms. Also, both markers revealed low intraclonal genetic variation. The RAPD detected genetic variation within the donor trees. The presence of pre-existent genetic variation within mature trees, in addition to its occurrence during the early stages of the embryogenic induction, and the presence of tissues of fertilisation origin within the maternal explants are all discussed. Nonetheless, the determination of the genetic identity of donor material is required, in addition to early detection methods of somaclonal variation.