952 resultados para alpha-2-macroglobulin
Resumo:
Tumor necrosis factor (TNF) alpha, interleukins (IL) 2, 4, 6, and 10, and IgG oligoclonal bands (IgG OB) in vitro production was assessed, after whole-blood stimulation with lipopolysaccharide or concanavalin A, in 61 patients presenting with relapsing-remitting, relapsing-progressive, or chronic progressive multiple sclerosis. Multiple sclerosis patients were receiving no treatment or azathioprine (AZA), cyclosporin, cyclophosphamide, subcutaneous interferon (IFN) beta 1 a, or corticosteroids (CST). Statistical correlations significantly showed that: (a) AZA lowers TNF-alpha (P = 0.002) and increases IL-4 production (P = 0.0024), and IFN-beta 1 a increases TNF-alpha and decreases IL-4 levels; (b) CST has a negative effect on TNF-alpha, IL-6, and IL-4 synthesis; and (c) AZA, IFN-beta 1 a, and CST diminish IgG OB synthesis (P = 0.001). Although our study of the dynamics of TNF-alpha, IL-2, IL-4, IL-6, and IL-10 in vitro production generally found no statistically significant correlations (partly explained by the limited number of values in the various groups), IL-6 was shown to drop during the periods surrounding relapse (P = 0.05) in the absence of treatment, while TNF-alpha (P = 0.04) and IL-6 (P < 0.05) dropped before exacerbation in the presence of AZA. In vitro production of TNF-alpha was closely and positively correlated with that of IL-6, independently of clinical features. The enhanced production of IL-10 detected before or at relapse with AZA and IFN-beta 1 a (trends) may interfere with initiation of the immune reaction and with the development of new CNS lesions. Some discrepancies with previously published results stress the difficulties in studying the state of stimulation of different populations of leukocytes by using a variety of in vitro stimuli and in establishing a correlation between mRNA studies and the amount of final or active protein produced.
Resumo:
The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Interleukins (IL)-1 and IL-2 control IL-2 receptor alpha and beta expression in immature thymocytes.
Resumo:
Functional high-affinity interleukin-2 receptors (IL-2R) contain three transmembrane proteins, IL-2R alpha, beta and gamma. We have investigated the expression of IL-2R alpha and beta genes in immature mouse thymocytes. Previous work has shown that during differentiation these cells transiently express IL-2R alpha on their surface. Stimulation of IL-2R alpha+ and IL-2R alpha- immature thymocytes with phorbol 12-myristate 13-acetate and calcium ionophore induces synthesis of IL-2R alpha and IL-2R beta mRNA. Most of this response depends on autocrine stimulation by IL-2. IL-1 synergizes with IL-2 to induce a 120-fold increase in IL-2R alpha mRNA and a 14-fold increase in IL-2R beta mRNA levels. A large proportion of the stimulated cells contains both transcripts. These interleukins do not induce any differentiation to more mature phenotypes. Collectively, these results show that IL-2 plays a major role in the regulation of IL-2R expression in normal immature thymocyte. We suggest that this response to interleukins may be part of a homeostatic mechanism to increase the production of immature thymocytes during stress.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
Despite the presence of a family of defense proteins, Phaseolus vulgaris can be attacked by bruchid insects resulting in serious damage to stored grains. The two distinct active forms of a-amylase inhibitors, a-AI1 and a-AI2, in P. vulgaris show different specificity toward a-amylases. Zabrotes subfasciatus a-amylase is inhibited by a-AI2 but not by a-AI1. In contrast, porcine a-amylase is inhibited by a-AI1 but not by a-AI2. The objective of this work was to understand the molecular basis of the specificity of two inhibitors in P. vulgaris (a-AI1 and a-AI2) in relation to a-amylases. Mutants of a-AI2 were made and expressed in tobacco plants. The results showed that all the a-AI2 mutant inhibitors lost their activity against the insect a-amylases but none exhibited activity toward the mammalian a-amylase. The replacement of His33 of a-AI2 with the a-AI1-like sequence Ser-Tyr-Asn abolished inhibition of Z. subfasciatus a-amylase. From structural modeling, the conclusion is that the size and complexity of the amylase-inhibitor interface explain why mutation of the N-terminal loop and resultant abolition of Z. subfasciatus a-amylase inhibition are not accompanied by gain of inhibitory activity against porcine a-amylase.
Resumo:
Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.
Resumo:
Novel alpha-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group=4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.
Resumo:
The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.
Resumo:
Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1 alpha previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1 alpha-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1 alpha antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.
Resumo:
1 The human dopamine D-2long (D-2L) receptor was expressed with four different G proteins in Sf9 cells using the baculovirus expression system. When co-expressed with G(i)/G(o) G proteins (G(i1)alpha, G(i2)alpha, G(i3)alpha, or G(o)alpha, plus Gbeta(1) and Ggamma(2)) the receptor displayed a high-affinity binding site for the agonists (dopamine and NPA), which was sensitive to GTP (100 mum), demonstrating interaction between the receptor and the different G proteins. 2 The receptor to G protein ratio (R: G ratio) was evaluated using [H-3]-spiperone saturation binding (R) and [S-35]-GTPgammaS saturation binding (G). R: G ratios of 1: 12, 1: 3, 1: 14 and 1: 5 were found for G(i1), G(i2), G(i3), and Go preparations, respectively. However, when R:G ratios of 1:2 and 1: 12 were compared for G(i2) and G(o), no difference was found for the stimulation of [S-35]-GTPgammaS binding. 3 Several agonists were tested for their ability to stimulate [S-35]-GTPgammaS binding to membranes co-expressing the receptor and various G proteins. All the compounds tested showed agonist activity in preparations expressing G(i3) and G(o). However, for G(i2) and G(i1) preparations, compounds such as S-(-)-3-PPP and p-tyramine were unable to stimulate [S-35]-GTPyS binding. 4 Most of the compounds showed higher relative efficacies (compared to dopamine) and higher potencies in the preparation expressing G(o). Comparison of the effects of different agonists in the different preparations showed that each agonist differentially activates the four G proteins. 5 We conclude that the degree of selectivity of G protein activation by the D-2L receptor can depend on the conformation of the receptor stabilised by an agonist.
Resumo:
Two milk components, alpha-lactalbumin (alpha-La) and glycomacropeptide (GMP) may inhibit intestinal infection/intoxification. (3)[H] thymidine-labeled enteropathogenic Escherichia coli (EPEC), Salmonella typhimurium (ATCC 6994) or Shigella flexneri (ATCC 9199) were introduced to CaCo-2 cultures and their association with CaCo-2 cells was assessed. Undigested, pepsin-digested and pepsin- and pancreatin-digested alpha-lactalbumin and glycomacropeptide inhibited association. Thus, milk supplemented with alpha-lactalbumin and glycomacropeptide might be effective in inhibiting associations of the pathogens EPEC, Salmonella typhimurium, and Shigella flexneri to intestinal cells.
Resumo:
Bonding, photochemical and electrochemical properties of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] (alpha-diimine=2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2) and 2,2'-bipyrimidine (3)) are strongly influenced by the presence of bridging carbonyl ligands. Irradiation at 471 nm initially results in the population of a sigma(Ru-3)pi*(alpha-diimine) excited state. From this state, fast decay takes place to the optically hardly directly accessible pi(Ru/mu-CO) pi*(alpha-diimine) lowest excited state. These assignments agree with theoretical (TD-DFT) results, resonance Raman and picosecond time-resolved infrared spectra. The involvement of the bridging carbonyl ligands in the electron transfer increases the energetic barrier for the formation of open-structure photoproducts such as biradicals and zwitterions. Zwitterions were therefore only obtained in strongly coordinating media such as pyridine at 250 K. The bridging carbonyl ligands also stabilize the radical anions produced upon one-electron reduction of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] and observed with cyclic voltammetry, EPR and IR spectroelectrochemistry (for alpha-diimine=2,2'-bipyrimidine). In contrast, open-triangle intermediates formed along the reduction path to [Ru(CO)(2)(alpha-diimine)](n) and [Ru-2(CO)(8)](2-) are more reactive than their triosmium analogues.
Resumo:
The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.