1000 resultados para Water disinfections
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints.
Resumo:
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.
Resumo:
Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes
Resumo:
This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.
Resumo:
Dissertation submitted to obtain a Ph.D. (Doutoramento) degree in Biology at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ambiente pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Schistosomiasis mansoni in the Serrano village, municipality of Cururupu, state of Maranhão, Brazil, is a widely spread disease. The PECE (Program for the Control of Schistosomiasis), undertaken since 1979 has reduced the prevalence of S. mansoni infection and the hepatosplenic form of the disease. Nevertheless piped water is available in 84% of the households, prevalence remains above 20%. In order to identify other risk factors responsible for the persistence of high prevalence levels, a cross-sectional survey was carried out in a systematic sample of 294 people of varying ages. Socioeconomic, environmental and demographic variables, and water contact patterns were investigated. Fecal samples were collected and analyzed by the Kato-Katz technique. Prevalence of S. mansoni infection was 24.1%, higher among males (35.5%) and between 10-19 years of age (36.6%). The risk factors identified in the univariable analysis were water contacts for vegetable extraction (Risk Ratio - RR = 2.92), crossing streams (RR = 2.55), bathing (RR = 2.35), fishing (RR = 2.19), hunting (RR = 2.17), cattle breeding (RR = 2.04), manioc culture (RR = 1.90) and leisure (RR = 1.56). After controlling for confounding variables by proportional hazards model the risks remained higher for males, vegetable extraction, bathing in rivers and water contact in rivers or in periodically inundated parts of riverine woodland (swamplands)
Resumo:
Nesta dissertação pretendeu-se estudar a viabilidade do uso de eletrodiálise com membranas bipolares (BM) na recuperação de ácido clorídrico e de hidróxido de sódio a partir de um efluente industrial que contém 1.4 mol/L de cloreto de sódio. Estas membranas mostraram ser uma ferramenta eficiente para a produção de ácidos e bases a partir do respetivo sal. Foi feita uma seleção de diferentes membranas bipolares (Neosepta, Fumatech e PCA) e aniónicas (PC-SA e PC-ACID 60) na tentativa de encontrar a combinação mais adequada para o tratamento do efluente. Dependendo do critério, o melhor arranjo de membranas é o uso de PC-ACID 60 (membrana aniónica), PC-SK (membrana catiónica) e membranas bipolares do tipo Neosepta para maior pureza dos produtos; membranas bipolares Fumatech para maior eficiência de dessalinização e membranas bipolares PCA para um maior grau de dessalinização. Tecnologicamente foi possível obter uma dessalinização de 99.8% em quatro horas de funcionamento em modo batch com recirculação de todas as correntes. Independentemente da combinação usada é recomendável que o processo seja parado quando a densidade de corrente deixa de ser máxima, 781 A/m2. Assim é possível evitar o aumento de impurezas nos produtos, contra difusão, descida instantânea do pH e uma dessalinização pouco eficiente. A nível piloto o principal fornecedor de membranas e unidade de tratamento “stack” é a marca alemã PCA. Sendo assim realizaram-se ensaios de repetibilidade, contra difusão, avaliação económica e upscaling utilizando as membranas bipolares PCA. A nível económico estudou-se o uso de dois tipos de unidades de tratamento; EDQ 380 e EDQ 1600, para diferentes níveis de dessalinização (50, 75 e 80%). Tendo em conta a otimização económica, é recomendável uma dessalinização máxima de 80%, uma vez que a eficiência de processo a este ponto é de 40%. A aplicação do método com a unidade EDQ 1600 para uma dessalinização de 50% é a mais vantajosa economicamente, com custos de 16 €/m3 de efluente tratado ou 0,78 €/kg Cl- removido. O número de unidades necessárias é 4 posicionados em série.
Resumo:
The use of questionnaires has been recommended for identifying, at a lower cost, individuals at risk for schistosomiasis. In this study, validity of information obtained by questionnaire in the screening for Schistosoma mansoni infection was assessed in four communities in the State of Minas Gerais, Brazil. Explanatory variables were water contact activities, sociodemographic characteristics and previous treatment for schistosomiasis. From 677, 1474, 766 and 3290 individuals eligible for stool examination in the communities, 89 to 97% participated in the study. The estimated probability of individuals to be infected, if they have all characteristics identified as independently associated with S.mansoni infection, varied from 15% in Canabrava, to 42% in Belo Horizonte, 48% in Comercinho and 80% in São José do Acácio. Our results do not support the hypothesis that a same questionnaire on risk factors could be used in screening for S.mansoni infection in different communities.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Plant Physiology
Resumo:
Cryptosporidium parvum and Giardia duodenalis are waterborne parasites that have caused several outbreaks of gastrointestinal disease associated with drinking water. Due to the lack of studies about the occurrence of these protozoa in water in the Southeast of Brazil, an investigation was conducted to verify the presence of cysts and oocysts in superficial raw water of the Atibaia River. The water samples were submitted to membrane filtration (3.0 mum) and elution was processed by (1) scraping and rinsing of membrane (RM method) and (2) acetone-dissolution (ADM method). Microbiologic and chemical parameters were analyzed. Aliquots of the pellets were examined by immunofluorescence (Merifluor, Meridian Diagnostics, Cincinnati, Ohio). All water samples were positive for Cryptosporidium and Giardia, in spite of the high turbidity. Higher recovery rates occurred in samples treated by the RM method than by the ADM technique. The goal for future work is the assessment of viability of cysts and oocysts to determine the public health significance of this finding.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.