861 resultados para Video-based interface
Resumo:
Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system
Resumo:
a video called “Do You Know the Equality Act”. The video is aimed at undergraduate and A level students. This was produced by 17 and our name is “The 8 Team”. The group consists of Elizabeth Bolton, Aisha Guba, Zoe Butler, Caroline Lee, Yingyi Emily Liu, George Lovegrove and Annie Relfe. Our content is based on the topic of legal awareness through
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.
Resumo:
This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The 'jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves an empirical study of how vodcasts (video-podcasts) can be used to enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submitted an individual laboratory report for the assessment of the structures laboratory. The data collection consisted of a questionnaire completed by the students, follow-up semi-structured interviews and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that most of the students who have not fully grasped the theory after the practical, managed to gain the required knowledge by viewing the vodcasts. According to their feedbacks, the students felt that they have control over how to use the material and to view it as many times as they wish. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by their explanations in their reports, and was illustrated by the approach they took to explicate the results of their experimental work. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and are beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves the empirical studies of how an innovative use of vodcasts (video-podcasts) can enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical laboratory work, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submit an individual laboratory report for the assessment of the structures laboratory. The data collection consists of a questionnaire completed by the students, and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that students who have not fully grasped the theory after the practical were successful in gaining the required knowledge by viewing the vodcasts. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by the quality of their explanations in their reports. This is illustrated by the approach they took to explicate the results of their experimental work, for example, they can explain how to calculate the Young’s Modulus properly and provided the correct value for it. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed the development of high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products, as demonstrated in Wireless-USB and Wireless-HDMI. However, these devices need high frequency clock rates, particularly for the OFDM, FFT and symbol processing sections resulting in high silicon cost and high electrical power. The high clock rates make hardware prototyping difficult and verification is therefore very important but costly. Acknowledging that electrical power in wireless consumer devices is more critical than the number of implemented logic gates, this paper presents a Double Data Rate (DDR) architecture for implementation inside a OFDM baseband codec in order to reduce the high frequency clock rates by a complete factor of 2. The presented architecture has been implemented and tested for ECMA-368 (Wireless- USB context) resulting in a maximum clock rate of 264MHz instead of the expected 528MHz clock rate existing anywhere on the baseband codec die.
Resumo:
The creation of OFDM based Wireless Personal Area Networks (WPANs) has allowed high bit-rate wireless communication devices suitable for streaming High Definition video between consumer products as demonstrated in Wireless- USB. However, these devices need high clock rates, particularly for the OFDM sections resulting in high silicon cost and high electrical power. Acknowledging that electrical power in wireless consumer devices is more critical than the number of implemented logic gates, this paper presents a Double Data Rate (DDR) architecture to reduce the OFDM input and output clock rate by a factor of 2. The architecture has been implemented and tested for Wireless-USB (ECMA-368) resulting in a maximum clock of 264MHz instead of 528MHz existing anywhere on the die.
Resumo:
Inferring population admixture from genetic data and quantifying it is a difficult but crucial task in evolutionary and conservation biology. Unfortunately state-of-the-art probabilistic approaches are computationally demanding. Effectively exploiting the computational power of modern multiprocessor systems can thus have a positive impact to Monte Carlo-based simulation of admixture modeling. A novel parallel approach is briefly described and promising results on its message passing interface (MPI)-based C implementation are reported.
Resumo:
WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.