983 resultados para Vector fields.
Resumo:
A straightforward method is proposed for computing the magnetic field produced by a circular coil that contains a large number of turns wound onto a solenoid of rectangular cross section. The coil is thus approximated by a circular ring containing a continuous constant current density, which is very close to the real situation when sire of rectangular cross section is used. All that is required is to evaluate two functions, which are defined as integrals of periodic quantities; this is done accurately and efficiently using trapezoidal-rule quadrature. The solution can be obtained so rapidly that this procedure is ideally suited for use in stochastic optimization, An example is given, in which this approach is combined with a simulated annealing routine to optimize shielded profile coils for NMR.
Resumo:
We propose a mechanism by which single outbreaks of vector-borne infections can happen even when the value of the basic reproduction number, R(o), of the infection is below one. With this hypothesis we have shown that dynamical models simulations demonstrate that the arrival of a relatively small (with respect to the host population) number of infected vectors can trigger a short-lived epidemic but with a huge number of cases. These episodes are characterized by a sudden outbreak in a previously virgin area that last from weeks to a few months, and then disappear without leaving vestiges. The hypothesis proposed in this paper to explain those single outbreaks of vector-borne infections, even when total basic reproduction number, Ro, is less than one (which explain the fact that those infections fail to establish themselves at endemic levels), is that the vector-to-host component of Ro is greater than one and that a sufficient amount of infected vectors are imported to the vulnerable area, triggering the outbreak. We tested the hypothesis by performing numerical simulations that reproduce the observed outbreaks of chikungunya in Italy in 2007 and the plague in Florence in 1348. The theory proposed provides an explanation for isolated outbreaks of vector-borne infections, ways to calculate the size of those outbreaks from the number of infected vectors arriving in the affected areas. Given the ever-increasing worldwide transportation network, providing a high degree of mobility from endemic to virgin areas, the proposed mechanism may have important implications for public health planning. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new tuberculosis vaccine is urgently needed. Prime-boost strategies are considered very promising and the inclusion of BCG is highly desirable. In this investigation, we tested the protective efficacy of BCG delivered in the neonatal period followed by boosters in the adult phase with a DNA vaccine containing the hsp65 gene from Mycobacterium leprae (pVAXhsp65). Immune responses were characterized by serum anti-hsp65 antibody levels and IFN-gamma and IL-5 production by the spleen. Amounts of these cytokines were also determined in lung homogenates. Protective efficacy was established by the number of colony-forming units (CFU) and histopathological analysis of the lungs after challenge with Mycobacterium tuberculosis. Immunization with BCG alone triggered a significant reduction of CFU in the lungs and also clearly preserved the pulmonary parenchyma. BCG priming also increased the immunogenicity of pVAXhsp65. However, boosters with pVAXhsp65 or the empty vector abolished the protective efficacy of BCG. Also, higher IL-5 levels were produced by spleen and lungs after DNA boosters. These results demonstrated that neonatal BCG immunization followed by DNAhsp65 boosters is highly immunogenic but is not protective against tuberculosis.
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
Bioelectrical impedance vector analysis (BIVA) is a new method that is used for the routine monitoring of the variation in body fluids and nutritional status with assumptions regarding body composition values. The aim of the present study was to determine bivariate tolerance intervals of the whole-body impedance vector and to describe phase angle (PA) values for healthy term newborns aged 7-28 d. This descriptive cross-sectional study was conducted on healthy term neonates born at a low-risk public maternity. General and anthropometric neonatal data and bioelectrical impedance data (800 mu A-50 kHz) were obtained. Bivariate vector analysis was conducted with the resistance-reactance (RXc) graph method. The BIVA software was used to construct the graphs. The study was conducted on 109 neonates (52.3% females) who were born at term, adequate for gestational age, exclusively breast-fed and aged 13 (SD 3.6) d. We constructed one standard, reference, RXc-score graph and RXc-tolerance ellipses (50, 75 and 95 %) that can be used with any analyser. Mean PA was 3.14 (SD 0.43)degrees (3.12 (SD 0.39)degrees for males and 3.17 (SD 0.48)degrees for females). Considering the overlapping of ellipses of males and females with the general distribution, a graph for newborns aged 7-28 d with the same reference tolerance ellipse was defined for boys and girls. The results differ from those reported in the literature probably, in part, due to the ethnic differences in body composition. BIVA and PA permit an assessment without the need to know body weight and the prediction error of conventional impedance formulas.
Resumo:
The magnitude of the basic reproduction ratio R(0) of an epidemic can be estimated in several ways, namely, from the final size of the epidemic, from the average age at first infection, or from the initial growth phase of the outbreak. In this paper, we discuss this last method for estimating R(0) for vector-borne infections. Implicit in these models is the assumption that there is an exponential phase of the outbreaks, which implies that in all cases R(0) > 1. We demonstrate that an outbreak is possible, even in cases where R(0) is less than one, provided that the vector-to-human component of R(0) is greater than one and that a certain number of infected vectors are introduced into the affected population. This theory is applied to two real epidemiological dengue situations in the southeastern part of Brazil, one where R(0) is less than one, and other one where R(0) is greater than one. In both cases, the model mirrors the real situations with reasonable accuracy.
Resumo:
The Bariev model with open boundary conditions is introduced and analysed in detail in the framework of the Quantum Inverse Scattering Method. Two classes of independent boundary reflecting K-matrices leading to four different types of boundary fields are obtained by solving the reflection equations. The models are exactly solved by means of the algebraic nested Bethe ansatz method and the four sets or Bethe ansatz equations as well as their corresponding energy expressions are derived. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
Current methods to detect transduction efficiency during the routine use of integrating retroviral vectors in gene therapy applications may require the use of radioactivity and usually rely upon subjective determination of the results. We have developed two competitive quantitative assays that use an enzyme-linked, amplicon hybridization assay (ELAHA) to detect the products of PCR-amplified regions of transgene from cells transduced with Moloney murine leukemia virus vectors. The quantitative assays (PCR-ELAHA) proved to be simple, rapid, and sensitive, avoiding the need for Southern hybridization, complex histochemical stains, or often subjective and time-consuming tissue culture and immunofluorescence assays. The PCR-ELAHA systems can rapidly detect proviral DNA from any retroviral vector carrying the common selective and marker genes neomycin phosphotransferase and green fluorescent protein, and the methods described are equally applicable to other sequences of interest, providing a cheaper alternative to the evolving real-time PCR methods. The results revealed the number of copies of retrovector provirus present per stably transduced cell using vectors containing either one or both qPCR targets.