921 resultados para Uncertainty Avoidance
Resumo:
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.
Resumo:
Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.
Resumo:
In typical conventional foundation design, the inherent variability of soil properties, model uncertainty and construction variability are not modeled explicitly. A main drawback of this is that the effect of each variability on the probability of an unfavorable event cannot be evaluated quantitatively. In this paper, a method to evaluate the uncertainty-reduction effect on the performance of a vertically-loaded pile foundation by monitoring the pile performance (such as pile load testing or placing sensors in piles) is proposed. The effectiveness of the proposed method is examined based on the investigation of a 120-pile foundation placed on three different ground profiles. The computed results show the capability of evaluating the uncertainty-reduction effect on the performance of a pile foundation by monitoring. © 2014 Taylor & Francis Group, London.
Resumo:
The delivery of integrated product and service solutions is growing in the aerospace industry, driven by the potential of increasing profits. Such solutions require a life cycle view at the design phase in order to support the delivery of the equipment. The influence of uncertainty associated with design for services is increasingly a challenge due to information and knowledge constraints. There is a lack of frameworks that aim to define and quantify relationship between information and knowledge with uncertainty. Driven by this gap, the paper presents a framework to illustrate the link between uncertainty and knowledge within the design context for services in the aerospace industry. The paper combines industrial interaction and literature review to initially define the design attributes, the associated knowledge requirements and the uncertainties experienced. The framework is then applied in three cases through development of causal loop models (CLMs), which are validated by industrial and academic experts. The concepts and inter-linkages are developed with the intention of developing a software prototype. Future recommendations are also included. © 2014 CIRP.
Resumo:
The problem of phase uncertainty arising in calibration of the test fixtures is investigated in this paper, It is shown that the problem exists no matter what kinds of calibration standards are used. It is also found that there is no need to determine the individual S-parameters of the test fixtures. In order to eliminate the problem of phase uncertainty, three different precise (known) reflection standards or one known reflection standard plus one known transmission standard should be used to calibrate symmetrical test fixtures. For the asymmetrical cases, three known standards, including at least one transmission standard, should be used. The thru-open-match (TOM) and thru-short-match (TSM) techniques are the simplest methods, and they have no bandwidth limitation. When the standards are imprecise (unknown), it is recommended to use any suitable technique, such as the thru-reflect-line, line-reflect-line, thru-short-delay, thru-open-delay,line-reflect-match, line-reflect-reflect-match, or multiline methods, to accurately determine the values of the required calibration terms and, in addition, to use the TOM or TSM method with the same imprecise standards to resolve the phase uncertainty.
Resumo:
Chinese Academy of Sciences [KZCX2-YW-315, KZCX2-YW-Q1-01]; National Natural Science Foundation of China [40625002, 90502009, 200905006]; Office of Science (BER), U. S. Department of Energy ; EU/FP7 [212250]
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The remote sensing based Production Efficiency Models (PEMs), springs from the concept of "Light Use Efficiency" and has been applied more and more in estimating terrestrial Net Primary Productivity (NPP) regionally and globally. However, global NPP estimates vary greatly among different models in different data sources and handling methods. Because direct observation or measurement of NPP is unavailable at global scale, the precision and reliability of the models cannot be guaranteed. Though, there are ways to improve the accuracy of the models from input parameters. In this study, five remote sensing based PEMs have been compared: CASA, GLO-PEM, TURC, SDBM and VPM. We divided input parameters into three categories, and analyzed the uncertainty of (1) vegetation distribution, (2) fraction of photosynthetically active radiation absorbed by the canopy (fPAR) and (3) light use efficiency (e). Ground measurements of Hulunbeier typical grassland and meteorology measurements were introduced for accuracy evaluation. Results show that a real-time, more accurate vegetation distribution could significantly affect the accuracy of the models, since it's applied directly or indirectly in all models and affects other parameters simultaneously. Higher spatial and spectral resolution remote sensing data may reduce uncertainty of fPAR up to 51.3%, which is essential to improve model accuracy.
Resumo:
In this paper, a disturbance controller is designed for making robotic system behave as a decoupled linear system according to the concept of internal model. Based on the linear system, the paper presents an iterative learning control algorithm to robotic manipulators. A sufficient condition for convergence is provided. The selection of parameter values of the algorithm is simple and easy to meet the convergence condition. The simulation results demonstrate the effectiveness of the algorithm..