924 resultados para Tumour Cells
Resumo:
BACKGROUND/AIMS: Genes encoding for some of the mitochondrial proteins are under the control of the transcriptional factor hypoxia inducible factor-1 alpha (HIF-1 alpha), which can accumulate under normoxic conditions in inflammatory states. The aim of this study was to evaluate the effects of cobalt chloride (CoCl(2), a hypoxia mimicking agent), tumour necrosis factor-alpha (TNF-alpha) and toll-like receptor (TLR) -2, -3 and -4 agonists on HIF-1 alpha accumulation, and further on HIF-1 alpha-mediated modulation of mitochondrial respiration in cultured human hepatocytes. METHODS: The human hepatoma cell line HepG2 was used in this study. Cells were treated with CoCl(2), TNF-alpha and TLR-2, -3 and -4 agonists. HIF-1 alpha was determined by Western blotting and mitochondrial respiration in stimulated cells by high-resolution respirometry. RESULTS: CoCl(2), TNF-alpha and TLR agonists induced the expression of HIF-1 alpha in a time-dependent fashion. TNF-alpha and CoCl(2), but not TLR agonists, induced a reduction in complex I-, II- and IV-dependent mitochondrial oxygen consumption. TNF-alpha-associated reduction of cellular oxygen consumption was abolished through inhibition of HIF-1 alpha activity by chetomin (CTM). Pretreatment with cyclosporine A prevented CoCl(2)-induced reduction of complex I- and II-dependent mitochondrial oxygen consumption and TNF-alpha-induced reduction of complex-I-dependent respiration, implicating the involvement of the mitochondrial permeability transition pore openings. TNF-alpha and TLR-2, -3 and -4 agonists induced the expression of vascular endothelial growth factor, which was partially abolished by the blockage of HIF-1 alpha with CTM. CONCLUSIONS: The data suggest that HIF-1 alpha modulates mitochondrial respiration during CoCl(2) and TNF-alpha stimulation, whereas it has no effect when induced with TLR-2, -3 and -4 agonists.
Resumo:
Introduction Reconstitution of peripheral blood (PB) B cells after therapeutic depletion with the chimeric anti-CD20 antibody rituximab (RTX) mimics lymphatic ontogeny. In this situation, the repletion kinetics and migratory properties of distinct developmental B-cell stages and their correlation to disease activity might facilitate our understanding of innate and adaptive B-cell functions in rheumatoid arthritis (RA). Methods Thirty-five 'RTX-naïve' RA patients with active arthritis were treated after failure of tumour necrosis factor blockade in an open-label study with two infusions of 1,000 mg RTX. Prednisone dose was tapered according to clinical improvement from a median of 10 mg at baseline to 5 mg at 9 and 12 months. Conventional disease-modifying antirheumatic drugs were kept stable. Subsets of CD19+ B cells were assessed by flow cytometry according to their IgD and CD27 surface expression. Their absolute number and relative frequency in PB were followed every 3 months and were determined in parallel in synovial tissue (n = 3) or synovial fluid (n = 3) in the case of florid arthritis. Results Six of 35 patients fulfilled the European League Against Rheumatism criteria for moderate clinical response, and 19 others for good clinical response. All PB B-cell fractions decreased significantly in number (P < 0.001) after the first infusion. Disease activity developed independently of the total B-cell number. B-cell repopulation was dominated in quantity by CD27-IgD+ 'naïve' B cells. The low number of CD27+IgD- class-switched memory B cells (MemB) in the blood, together with sustained reduction of rheumatoid factor serum concentrations, correlated with good clinical response. Class-switched MemB were found accumulated in flaring joints. Conclusions The present data support the hypothesis that control of adaptive immune processes involving germinal centre-derived, antigen, and T-cell-dependently matured B cells is essential for successful RTX treatment.
Resumo:
An 8-year-old crossbred dog was presented with a one-month history of progressive weakness, respiratory impairment and abdominal distension. Surgical exploration revealed the presence of a splenic mass that infiltrated the mesentery and was adherent to the stomach and pancreas. The mass was composed of highly cellular areas of spindle-shaped cells arranged in interlacing bundles, streams, whorls and storiform patterns (Antoni A pattern) and less cellular areas with more loosely arranged spindle to oval cells (Antoni B pattern). The majority of neoplastic cells expressed vimentin, S-100 and glial fibrillary acidic protein (GFAP), but did not express desmin, alpha-smooth muscle actin or factor VIII. These morphological and immunohistochemical findings characterized the lesion as a malignant peripheral nerve sheath tumour (PNST). Primary splenic PNST has not been documented previously in the dog.
Resumo:
c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.
Resumo:
One alternative approach for the treatment of lung cancer might be the activation of the immune system using vaccination strategies. However, most of clinical vaccination trials for lung cancer did not reach their primary end points, suggesting that lung cancer is of low immunogenicity. To provide additional experimental information about this important issue, we investigated which type of immune cells contributes to the protection from lung cancer development. Therefore, A/J mice induced for lung adenomas/adenocarcinomas by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were depleted of CD4(+) or CD8(+) T cells, CD11b(+) macrophages, Gr-1(+) neutrophils and asialo GM1(+) natural killer (NK) cells. Subsequent analysis of tumour growth showed an increase in tumour number only in mice depleted of NK cells. Further asking by which mechanism NK cells suppressed tumour development, we neutralized several death ligands of the tumour necrosis factor (TNF) family known to be involved in NK cell-mediated cytotoxicity. However, neither depletion of TNF-α, TNF-related apoptosis-inducing ligand, TNF-like weak inducer of apoptosis or FasL alone nor in combination induced an augmentation of tumour burden. To show whether an alternative cell death pathway is involved, we next generated A/J mice deficient for perforin. After challenging with NNK, mice deficient for perforin showed an increase in tumour number and volume compared to wild-type A/J mice. In summary, our data suggest that NK cells and perforin-mediated cytolysis are critically involved in the protection from lung cancer giving promise for further immunotherapeutic strategies for this disease.
Resumo:
BACKGROUND The antitumour immune response plays an important role in the prognosis of melanoma. High numbers of circulating regulatory T cells have been associated with rapid disease progression. OBJECTIVES To assess the influence of forkhead box protein (FOXP)3, CD1a and langerin expression on the prognosis of primary melanoma. METHODS We analysed 185 primary melanomas by immunohistochemical staining for expression of the regulatory T-cell marker FOXP3 and the dendritic cell markers langerin and CD1a, and correlated marker expression with clinical outcome. RESULTS Disease-free survival and overall survival were significantly longer in patients expressing low levels of FOXP3 in the primary melanoma, whereas they were associated with high expression of CD1a. The negative prognostic value of FOXP3 expression was independent of the Breslow tumour thickness. Langerin expression did not correlate with the clinical outcome. CONCLUSIONS High expression of FOXP3 in the primary melanoma may be used as an additional independent prognostic marker for early tumour progression in patients with melanoma.
Resumo:
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.
Resumo:
Purpose The radiolanthanide 161Tb (T 1/2 = 6.90 days, Eβ− av = 154 keV) was recently proposed as a potential alternative to 177Lu (T 1/2 = 6.71 days, Eβ− av = 134 keV) due to similar physical decay characteristics but additional conversion and Auger electrons that may enhance the therapeutic efficacy. The goal of this study was to compare 161Tb and 177Lu in vitro and in vivo using a tumour-targeted DOTA-folate conjugate (cm09). Methods 161Tb-cm09 and 177Lu-cm09 were tested in vitro on folate receptor (FR)-positive KB and IGROV-1 cancer cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. In vivo 161Tb-cm09 and 177Lu-cm09 (10 MBq, 0.5 nmol) were investigated in two different tumour mouse models with regard to the biodistribution, the possibility for single photon emission computed tomography (SPECT) imaging and the antitumour efficacy. Potentially undesired side effects were monitored over 6 months by determination of plasma parameters and examination of kidney function with quantitative SPECT using 99mTc-dimercaptosuccinic acid (DMSA). Results To obtain half-maximal inhibition of tumour cell viability a 4.5-fold (KB) and 1.7-fold (IGROV-1) lower radioactivity concentration was required for 161Tb-cm09 (IC50 ~0.014 MBq/ml and ~2.53 MBq/ml) compared to 177Lu-cm09 (IC50 ~0.063 MBq/ml and ~4.52 MBq/ml). SPECT imaging visualized tumours of mice with both radioconjugates. However, in therapy studies 161Tb-cm09 reduced tumour growth more efficiently than 177Lu-cm09. These findings were in line with the higher absorbed tumour dose for 161Tb-cm09 (3.3 Gy/MBq) compared to 177Lu-cm09 (2.4 Gy/MBq). None of the monitored parameters indicated signs of impaired kidney function over the whole time period of investigation after injection of the radiofolates. Conclusion Compared to 177Lu-cm09 we demonstrated equal imaging features for 161Tb-cm09 but an increased therapeutic efficacy for 161Tb-cm09 in both tumour cell lines in vitro and in vivo. Further preclinical studies using other tumour-targeting radioconjugates are clearly necessary to draw final conclusions about the future clinical perspectives of 161Tb.
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Despite several improvements in the surgical field and in the systemic treatment, ovarian cancer (OC) is still characterized by high recurrence rates and consequently poor survival. In OC, there is still a great lack of knowledge with regard to cancer behavior and mechanisms of recurrence, progression, and drug resistance. The OC metastatization process mostly occurs via intracoelomatic spread. Recent evidences show that tumor cells generate a favorable microenvironment consisting in T regulatory cells, T infiltrating lymphocytes, and cytokines which are able to establish an "immuno-tolerance mileau" in which a tumor cell can become a resistant clone. When the disease responds to treatment, immunoediting processes and cancer progression have been stopped. A similar inhibition of the immunosuppressive microenvironment has been observed after optimal cytoreductive surgery as well. In this scenario, the early identification of circulating tumor cells could represent a precocious signal of loss of the immune balance that precedes cancer immunoediting and relapse. Supporting this hypothesis, circulating tumor cells have been demonstrated to be a prognostic factor in several solid tumors such as colorectal, pancreatic, gastric, breast, and genitourinary cancer. In OC, the role of circulating tumor cells is still to be defined. However, as opposed to healthy women, circulating tumor cells have been demonstrated in peripheral blood of OC patients, opening a new research field in OC diagnosis, treatment monitoring, and follow-up.
Resumo:
The strand transferase RAD51 is a component of the homologous recombination repair pathway. To examine the contribution of RAD51 to the genotoxic effects of ionising radiation, we have used a novel ribozyme strategy. A reporter gene vector was constructed so that expression of an inserted synthetic double-stranded ribozyme-encoding oligonucleotide would be under the control of the cytomegalovirus immediate-early gene enhancer/promoter system. The prostate tumour cell line LNCaP was transfected with this vector or a control vector, and a neomycin resistance gene on the vector was used to create geneticin-resistant stable cell lines. Three stable cell lines were shown by western blot analysis to have significant down-regulation of RAD51 to 20–50% of the levels expressed in control cell lines. All three cell lines had a similar increased sensitivity to γ-irradiation by 70 and 40%, respectively, compared to normal and empty vector-transfected cells, corresponding to dose-modifying factors of ∼2.0 and 1.5 in the mid-range of the dose-response curves. The amount of RAD51 protein in transfected cell lines was shown to strongly correlate with the α parameter obtained from fitted survival curves. These results highlight the importance of RAD51 in cellular responses to radiation and are the first to indicate the potential use of RAD51-targeted ribozyme minigenes in tumour radiosensitisation.
Resumo:
Background: Tumour metastasis remains the principal cause of treatment failure and poor prognosis in patients with cancer. Recent advances in our understanding of the biology of metastasis are providing novel potential targets for anti-cancer therapies. Aim: This paper reviews the current concepts in tumour metastasis. Methods: A review of Medline publications relating to the molecular biology and therapy of human tumour metastasis was conducted. Results and Discussion: Early metastasis models were based upon the premise of uninterrupted tumour growth, with the inevitable formation of distant metastases and eventual death of the patient. However, current research suggests that metastasis is an inefficient process governed by several rate-limiting steps, and that failure to negotiate these steps can lead to tumour dormancy. Successful metastatic tumour growth depends upon appropriate tumour-host microenvironment interactions and, ultimately, the development of vascularised metastases post-extravasation in the target organ. An understanding of the molecular mechanisms involved in this dynamic process will aid in the identification of therapeutic targets that may allow earlier diagnosis and more specific therapies for patients with metastasis.
Resumo:
The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Synthetic cytotoxic T cell (CTL) epitope peptides provide an effective and safe means of vaccination against cancers and viruses, as these peptides can induce specific CD8+ effector T cells in vivo. However, the effector CD8+ T cells induced by the minimal CTL epitope peptides do not last past about 3 weeks after the induction and no functional memory CD8+ T cells are generated. It is held that simultaneous induction of CD4+ T cells by incorporating peptides containing T-helper epitopes in the vaccine at the time of primary vaccination are necessary for the induction of long-lived functional memory CD8+ T cells. We now report that, surprisingly, incorporation of medium length (>20 AA) peptides devoid of detectable T-helper epitopes in a minimal CTL epitope-based vaccine can also induce long-lasting! functional rumour antigen specific memory CD8+ T cells that are capable of promoting protection against tumour challenge. This observation may have implications for the formulation of therapeutic anti-cancer and anti-virus peptide vaccines where a strong induction of CD4 T help would be undesirable. (C) 2004 Elsevier Ltd. All rights reserved.