375 resultados para Tlr
Resumo:
Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.
Resumo:
We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method.
Resumo:
Synthetic cytotoxic T cell (CTL) epitope peptides provide an effective and safe means of vaccination against cancers and viruses, as these peptides can induce specific CD8+ effector T cells in vivo. However, the effector CD8+ T cells induced by the minimal CTL epitope peptides do not last past about 3 weeks after the induction and no functional memory CD8+ T cells are generated. It is held that simultaneous induction of CD4+ T cells by incorporating peptides containing T-helper epitopes in the vaccine at the time of primary vaccination are necessary for the induction of long-lived functional memory CD8+ T cells. We now report that, surprisingly, incorporation of medium length (>20 AA) peptides devoid of detectable T-helper epitopes in a minimal CTL epitope-based vaccine can also induce long-lasting! functional rumour antigen specific memory CD8+ T cells that are capable of promoting protection against tumour challenge. This observation may have implications for the formulation of therapeutic anti-cancer and anti-virus peptide vaccines where a strong induction of CD4 T help would be undesirable. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Th2-associated factors such as IL-4 are involved in both the development of Th2 responses (via modulating Th2 cell differentiation) and in the effector phase of Th2 responses (via modulating macrophage activation). The IL-1 receptor-like protein ST2 (T1, Fit-1, or DER4) is expressed as a membrane-bound (ST2L) or secreted form (sST2), and has been clearly implicated as a regulator of both the development and effector phases of Th2-type responses. Here we analyze the mechanisms and therapeutic implications of the unique ability of ST2 to promote development and function of type 2 helper T cells through a positive feedback loop, as well as to act as a negative feedback modulator of macrophage pro-inflammatory function. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Different DNA motifs are required for optimal stimulation Of mouse and human immune cells by CpG oligode-oxynucleotides (ODN). These species differences presumably reflect sequence differences in TLR9, the CPG DNA receptor. In this study, we show that this sequence specificity is restricted to phosphorothioate (PS)-modified ODN and is not observed when a natural phosphodiester backbone is used. Thus, human and mouse cells have not evolved to recognize different CpG motifs in natural DNA. Nonoptimal PS-ODN (i.e., mouse CpG motif on human cells and vice versa) gave delayed and less sustained phosphorylation of p38 AWK than optimal motifs. When the CpG dinucleotide was inverted to GC In each ODN some residual activity of the PS-ODN was retained in a species-specific, TLR-9-dependent manner. Thus, TLR9 may he responsible for mediating many published CpG-independent responses to PS-ODN.
Resumo:
Monocyte-derived dendritic cells (MoDCs) in clinical use for cancer immunotherapy are ideally generated in serum-free medium (SFM) with inclusion of a suitable maturation factor toward the end of the incubation period. Three good manfacturing practice (GMP) grade SFMs (AIM-V, X-VIVO 15, and X-VIVO 20) were compared with RPMI-1640, supplemented with 10% fetal bovine serum or 10% human serum. DCs generated for 7 days in SFM were less mature and secreted less interleukin (IL) 12p70 and IL-10 than DCs generated in 10% serum. DC yield was comparable in SFMs, and a greater proportion of cells was viable after maturation. Toll-like receptor (TLR) ligands were compared for their ability to induce cytokine secretion under serum-free conditions in the presence of interferon (IFN) gamma. With the exception of Poly I:C, TLR ligands stimulated high levels of IL-10 secretion. High levels of IL-12p70 were induced by two TLR4-mediated stimuli, lipopolysaccharide and Ribomunyl, a clinical-grade bacterial extract. When T-cell responses were compared in allogeneic mixed leukocyte reaction, DCs stimulated with Ribomunyl induced higher levels of IFN gamma than DCs stimulated with the cytokine cocktail: tumor necrosis factor-alpha, IL-1 beta, IL-6, and prostaglandin E-2. In the presence of IL-10 neutralizing antibodies, DC IL-12p70 production and T-cell IFN gamma were increased in vitro. Similarly, DCs stimulated with Ribomunyl, IFN gamma, and anti-IL-10 induced high levels of tetanus toxoid-specific T-cell proliferation and IFN gamma secretion. Thus, MoDCs generated ill SFM efficiently stimulate T-cell IFN gamma production after maturation in the presence of a clinical-grade TLR4 agonist and IL-10 neutralization.
Resumo:
There is a growing interest in “medical gasses” for their antibacterial and anti-inflammatory properties. Hydrogen sulfide (H2S), a member of the family of gasotransmitters, is in fact increasingly being recognized as an important signaling molecule, but its precise role in the regulation of the inflammatory response is still not clear. For this reason, the aim of the first part of this thesis was to investigate the effects of H2S on the expression of pro-inflammatory cytokines, such as MCP-1, by using an in vitro model composed by both primary monocytes-derived macrophages cultures and the human monocytic cell line U937 infected with Mycoplasma fermentans, a well-known pro-inflammatory agent. In our experiments, we observed a marked increase in the production of pro-inflammatory cytokines in infected cells. In particular, MCP-1 was induced both at the RNA and at the protein level. To test the effects of H2S on infected cells, we treated the cells with two different H2S donors (NaHS and GYY4137), showing that both H2S treatments had anti-inflammatory effects in Mycoplasma-infected cells: the levels of MCP-1, both mRNA expression and protein production, were reduced. Our subsequent studies aimed at understanding the molecular mechanisms responsible for these effects, focused on two specific molecular pathways, both involved in inflammation: the NF-κB and the Nrf2 pathway. After treatment with pharmacological inhibitors, we demonstrated that Mycoplasma fermentans induces MCP-1 expression through the TLR-NF-κB pathway with the nuclear translocation of its subunits, while treatment with H2S completely blocked the nuclear translocation of NF-κB heterodimer p65/p50. Then, once infected cells were treated with H2S donors, we observed an increased protective effect of Nrf2 and also a decrease in ROS production. These results highlight the importance of H2S in reducing the inflammatory process caused by Mycoplasma fermentans. To this regard, it should be noted that several projects are currently ongoing to develop H2S-releasing compounds as candidate drugs capable of alleviating cell deterioration and to reduce the rate of decline in organ function. In the second part of this study, we investigated the role of Mycoplasma infection in cellular transformation. Infectious agents are involved in the etiology of many different cancers and a number of studies are still investigating the role of microbiota in tumor development. Mycoplasma has been associated with some human cancers, such as prostate cancer and non-Hodgkin’s lymphoma in HIV-seropositive people, and its potential causative role and molecular mechanisms involved are being actively investigated. To this regard, in vitro studies demonstrated that, upon infection, Mycoplasma suppresses the transcriptional activity of p53, key protein in the cancer suppression. As a consequence, infected cells were less susceptible to apoptosis and proliferated more than the uninfected cells. The mechanism(s) responsible for the Mycoplasma-induced inhibitory effect on p53 were not determined. Aim of the second part of this thesis was to better understand the tumorigenic role of the microorganism, by investigating more in details the effect(s) of Mycoplasma on p53 activity in an adenocarcinoma HCT116 cell line. Treatment of Mycoplasma-infected cells with 5FU or with Nutlin, two molecules that induce p53 activity, resulted in cellular proliferation comparable to untreated controls. These results suggested that Mycoplasma infection inhibited p53 activity. Immunoprecipitation of p53 with specific antibodies, and subsequent Gas Chromatography and Mass Spectroscopy (GC-MS) assays, allowed us to identify several Mycoplasma-specific proteins interacting with p53, such as DnaK, a prokaryotic heat shock protein and stress inducible chaperones. In cells transfected with DnaK we observed i) reduced p53 protein levels; ii) reduced activity and expression of p21, Bax and PUMA, iii) a marked increase in cells leaving G1 phase. Taken together, these data show an interaction between the human p53 and the Mycoplasma protein DnaK, with the consequent decreased p53 activity and decreased capability to respond to DNA damage and prevent cell proliferation. Our data indicate that Mycoplasma could be involved in cancer formation and the mechanism(s) has the potential to be a target for cancer diagnosis and treatment(s).
Resumo:
As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.
Resumo:
Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.
Resumo:
The cellular changes during ageing are incompletely understood yet immune system dysfunction is implicated in the age-related decline in health. The acquired immune system shows a functional decline in ability to respond to new pathogens whereas serum levels of cytokines are elevated with age. Despite these age-associated increases in circulating cytokines, the function of aged macrophages is decreased. Pathogen-associated molecular pattern receptors such as Toll-like receptors (TLRs) are vital in the response of macrophages to pathological stimuli. Here we review the evidence for defective TLR signalling in normal ageing. Gene transcription, protein expression and cell surface expression of members of the TLR family of receptors and co-effector molecules do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signalling events, including inhibition of positive and activation of negative modulators of TLR induced signalling events. In this paper we hypothesize that despite a poor inflammatory response via TLR activation, the ineffective clearance of pathogens by macrophages increases the duration of their activation and contributes to perpetuation of inflammatory responses and ageing.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Background Atherosclerosis is potentiated by stimulation of Toll-like receptors (TLRs), which serve to detect pathogen associated molecular patterns (PAMPs). However little is known of which PAMPs may be present in atheroma, or capable of stimulating inflammatory signalling in vascular cells. Materials and Methods DNA extracted from human carotid atheroma samples was amplified and sequenced using broad-range 16S gene specific primers to establish historical exposure to bacterial PAMPs. Responsiveness of primary human arterial and venous endothelial and smooth muscle cells to PAMPs specific for each of the TLRs was assessed by measurement of interleukin-8 secretion and E-selectin expression. Results Extracts of atheromatous tissue stimulated little or no signalling in TLR-transfected HEK-293 cells. However, sequencing of bacterial DNA amplified from carotid atheroma revealed the presence of DNA from 17 different bacterial genera, suggesting historical exposure to bacterial lipopeptide, lipopolysaccharide and flagellin. All cells examined were responsive to the ligands of TLR3 and TLR4, poly inosine:cytosine and lipopolysaccharide. Arterial cells were responsive to a wider range of PAMPs than venous cells, being additionally responsive to bacterial flagellin and unmethylated cytosine-phosphate-guanosine DNA motifs, the ligands of TLR5 and TLR9, respectively. Cells were generally unresponsive towards the ligands of human TLR7 and TLR8, loxoribine and single stranded RNA. Only coronary artery endothelial cells expressed TLR2 mRNA and responded to the TLR2 ligand Pam3CSK4. Conclusions Vascular cells are responsive to a relatively diverse range of TLR ligands and may be exposed, at least transiently, to ligands of TLR2, TLR4, TLR5 and TLR9 during the development of carotid atheroma.
Resumo:
Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an ‘antigen depot’ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the ‘depot-effect’ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.
Resumo:
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.
Resumo:
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.