550 resultados para TECTONICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Site 582, DSDP Leg 87, turbidites about 560 m thick were recovered from the floor of the Nankai Trough. A turbidite bed is typically composed of three subdivisions: a lower graded sand unit, an upper massive silt unit, and an uppermost Chondrites burrowed silt unit. The turbidites intercalate with bluish gray hemipelagic mud which apparently accumulated below the calcite compensation depth. In order to investigate the nature and provenance of the turbidites, we studied the grain orientation, based on magnetic fabric measurements and thin-section grain counting, and grain size, using a photo-extinction settling tube and detrital modal analysis. The following results were obtained: (1) grain orientation analysis indicates that the turbidity current transport parallels the trench axis, predominantly from the northeast; (2) Nankai Trough turbidites generally decrease in grain size to the southwest; (3) turbidite sands include skeletal remains indicative of fresh-water and shallow-marine environments; and (4) turbidites contain abundant volcanic components, and their composition is analogous to the sediments of the Fuji River-Suruga Bay area. Considering other evidence, such as physiography and geometry of trench fill, we conclude that the turbidites of Site 582 as well as Site 583 were derived predominantly from the mouth of Fuji River and were transported through the Suruga Trough to the Nankai Trough, a distance of some 700 km. This turbidite transport system has tectonic implications: (1) the filling of the Nankai Trough is the direct consequence of the Izu collision in Pliocene- Pleistocene times; (2) the accretion of trench fill at the trench inner slope observed in the Nankai Trough is controlled by collision tectonics; and (3) each event of turbidite deposition may be related to a Tokai mega-earthquake.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Tithonian sequence of shallow-water limestones, intercalated with siliciclastics and overlain by dolomite, was recovered during drilling at ODP Site 639 on the edge of a tilted fault block. The carbonates were strongly affected by fracturing, dolomitization, dedolomitization, and compaction. The chronology and nature of the fractures, fracture infilling, and diagenesis of the host rock are established and correlated for both the limestone and the dolomite. A first phase of dolomitization affected limestone that was already, at least partially, indurated. In the limestone unit, fractures were filled by calcite and dolomite; most of the dolomite was recrystallized into calcite, except for the upper part. In the dolomitic unit, the first-formed dolomite was progressively recrystallized into saddle dolomite, as fractures were simultaneously activated. The dolomitic textures become less magnesian (the molar ratio mMg/mCa goes from 1.04-0.98 to 0.80), and the d18O (PDB) ranges from -10 per mil to -8 per mil. The varying pores and fissures are either cemented by a calcic saddle dolomite (mMg/mCa ranging from 0.95 to 0.80) or filled with diverse internal sediments of detrital calcic dolomite, consisting of detrital dolomite silt (d18O from -9 per mil to -7 per mil) and laminated yellow filling (with different d18O values that range from -4 per mil to +3 per mil). These internal sediments clearly contain elements of the host rock and fragments of saddle crystals. They are covered by marls with calpionellids of early Valanginian age, which permits dating of most of the diagenetic phases as pre-Valanginian. The dolomitization appears to be related to fracturing resulting from extensional tectonics; it is also partially related to an erosional episode. Two models of dolomitization can be proposed from the petrographic characteristics and isotopic data. Early replacement of aragonite bioclasts by sparite, dissolution linked to dolomitization, and negative d18O values of dolomite suggest a freshwater influence and 'mixing zone' model. On the other hand, the significant presence of saddle dolomite and repeated negative d18O values suggest a temperature effect; because we can dismiss deep burial, hydrothermal formation of dolomite would be the most probable model. For both of these hypotheses, the vadose filling of cavities and fractures by silt suggests emersion, and the different, and even positive, d18O values of the last-formed yellow internal sediment could suggest dolomitization of the top of the sequence under saline to hypersaline conditions. Fracturing resulting in the reopening of porosity and the draining of dolomitizing fluids was linked to extensional tectonics prior to the tilting of the block. These features indicate an earlier beginning to the rifting of the Iberian margin than previously known. Dolomitization, emersion, and erosion correspond to eustatic sea-level lowering at the Berriasian/Valanginian boundary. Diagenesis, rather than sedimentation, seems to mark this global event and to provide a record of the regional tectonic history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the essential problems of oceanic tectonics is estimation of the influence of plumes of the deep hot mantle on processes in the axial spreading zone. Areas of two giant (St. Helena and Tristan da Cunha) plumes in the Mid-Atlantic Ridge (MAR) rift zone (South Atlantic) are characterized by the effusion of basalts that differ from typical depleted riftogenic tholeiites by anomalously high contents of lithophile components and specific isotopic compositions. Moreover, the rift valley floor with basalt effusion is significantly uplifted above the adjacent sectors of the rift. The formation of the St. Helena Seamount located 400 km east of the MAR axis is related to magmatism that is active to this day. St. Helena Island is a member of the structural ensemble of large volcanic seamounts (Bonaparte, Bagration, and Kutuzov). Like St. Helena Island, each seamount incorporates a series of smaller rises of different morphologies and dimensions. Thus, a system of subparallel series of NE-trending (~45°) rises extend from the seamount ensemble to the African continent. According to the plate tectonics concept, the seamount series represent hotspots related to a deep mantle plume that can be projected onto the present-day St. Helena Island area (St. Helena plume). At the same time, the inferred topographic map based on satellite altimetry data shows that the seamount series also extend along the opposite southwestern direction (~225°) toward the axial MAR and even intersect the latter structure. This fact cannot be explained by the hotspot hypothesis, which suggests stationary positions of plumes relative to the mobile oceanic plate. In the course of Cruise 10 of the R/V Akademik Ioffe (2002), detailed geological and geophysical investigations were carried out at the junction of one structural series with the MAR rift zone located near the Martin Vaz Fracture Zone (Martin Vaz test area, 19°-20° S). The present communication is devoted to the study of lithology, geochemistry, and isotopy of basalts dredged at the test area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of nuclear geochronology methods in study of recent sedimentation processes, in paleoceanology, tectonics, geomorphology, and other problems associated with accumulation of sedimentary material in oceans and seas are under consideration in the book. A comparative analysis of dating results obtained by biostratigraphy, paleomagnetic and nuclear geochronology methods is given.