967 resultados para Steel Fracture
Resumo:
Introduction: In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional polished tapered Exeter stem. Method: A total of forty-two stems, twenty-one short stems and twenty-one conventional stems both with three different offsets were cemented in a composite sawbone model and loaded to fracture. Results: study showed that femurs will break at a significantly lower load to failure with a shorter compared to conventional length Exeter stem. Conclusion: This Both standard and short stem design are safe to use as the torque to failure is 7–10 times as much as the torques seen in activities of daily living.
Resumo:
This project examined the differences in healing of metaphyseal bone, when the implants of variable stiffness are used for fracture fixation. This knowledge is important in development of novel orthopaedic implants, used in orthopaedic surgery to stabilise the fractures. Dr Koval used a mouse model to create a fracture, and then assessed its healing with a combination of mechanical testing, microcomputed tomography and histomorphometric examination.
Resumo:
Complex bone contour and anatomical variations between individual bones complicate the process of deriving an implant shape that fits majority of the population. This thesis proposes an automatic fitting method for anatomically-precontoured plates based on clinical requirements, and investigated if 100% anatomical fit for a group of bone is achievable through manual bending of one plate shape. It was found that, for the plate used, 100% fit is impossible to achieve through manual bending alone. Rather, newly-developed shapes are also required to obtain anatomical fit in areas with more complex bone contour.
Resumo:
Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.
Resumo:
Study Design Delphi panel and cohort study. Objective To develop and refine a condition-specific, patient-reported outcome measure, the Ankle Fracture Outcome of Rehabilitation Measure (A-FORM), and to examine its psychometric properties, including factor structure, reliability, and validity, by assessing item fit with the Rasch model. Background To our knowledge, there is no patient-reported outcome measure specific to ankle fracture with a robust content foundation. Methods A 2-stage research design was implemented. First, a Delphi panel that included patients and health professionals developed the items and refined the item wording. Second, a cohort study (n = 45) with 2 assessment points was conducted to permit preliminary maximum-likelihood exploratory factor analysis and Rasch analysis. Results The Delphi panel reached consensus on 53 potential items that were carried forward to the cohort phase. From the 2 time points, 81 questionnaires were completed and analyzed; 38 potential items were eliminated on account of greater than 10% missing data, factor loadings, and uniqueness. The 15 unidimensional items retained in the scale demonstrated appropriate person and item reliability after (and before) removal of 1 item (anxious about footwear) that had a higher-than-ideal outfit statistic (1.75). The “anxious about footwear” item was retained in the instrument, but only the 14 items with acceptable infit and outfit statistics (range, 0.5–1.5) were included in the summary score. Conclusion This investigation developed and refined the A-FORM (Version 1.0). The A-FORM items demonstrated favorable psychometric properties and are suitable for conversion to a single summary score. Further studies utilizing the A-FORM instrument are warranted. J Orthop Sports Phys Ther 2014;44(7):488–499. Epub 22 May 2014. doi:10.2519/jospt.2014.4980
Resumo:
Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.
Resumo:
Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.
Resumo:
Cold-formed steel members are widely used in load bearing Light gauge steel frame (LSF) wall systems with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. Hence there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the LSF wall studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strengths of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation into the accuracy of using currently available fire design rules of LSF walls and the results.
Resumo:
Cold-formed steel members are often subject to axial compression loads in a range of applications. These thin-walled members can be subject to various types of buckling modes, including flexural-torsional buckling. Design standards provide guidelines for columns subject to flexural-torsional buckling modes at ambient temperature. However, there are no specific design guidelines for elevated temperature conditions. Hence extensive research efforts have gone into the many investigations addressing the flexural-torsional buckling behaviour of cold-formed steel columns at elevated temperatures.This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current ambient temperature Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures by simply using the appropriate elevated temperature mechanical properties. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This research has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses. This paper presents the details of this research study and the results.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.
Resumo:
Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.
Resumo:
This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.
Resumo:
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.
Resumo:
Strengthening of metallic structures using carbon fibre reinforced polymer (CFRP) has become a smart strengthening option over the conventional strengthening method. Transverse impact loading due to accidental vehicular collision can lead to the failure of existing steel hollow tubular columns. However, knowledge is very limited on the behaviour of CFRP strengthened steel members under dynamic impact loading condition. This paper deals with the numerical simulation of CFRP strengthened square hollow section (SHS) steel columns under transverse impact loading to predict the behaviour and failure modes. The transverse impact loading is simulated using finite element (FE) analysis based on numerical approach. The accuracy of the FE modelling is ensured by comparing the predicted results with available experimental tests. The effects of impact velocity, impact mass, support condition, axial loading and CFRP thickness are examined through detail parametric study. The impact simulation results indicate that the strengthening technique shows an improved impact resistance capacity by reducing lateral displacement of the strengthened column about 58% compared to the bare steel column. Axial loading plays an important role on the failure behaviour of tubular column.