931 resultados para Spatial conditional autoregressive model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial econometrics has been criticized by some economists because some model specifications have been driven by data-analytic considerations rather than having a firm foundation in economic theory. In particular this applies to the so-called W matrix, which is integral to the structure of endogenous and exogenous spatial lags, and to spatial error processes, and which are almost the sine qua non of spatial econometrics. Moreover it has been suggested that the significance of a spatially lagged dependent variable involving W may be misleading, since it may be simply picking up the effects of omitted spatially dependent variables, incorrectly suggesting the existence of a spillover mechanism. In this paper we review the theoretical and empirical rationale for network dependence and spatial externalities as embodied in spatially lagged variables, arguing that failing to acknowledge their presence at least leads to biased inference, can be a cause of inconsistent estimation, and leads to an incorrect understanding of true causal processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine whether variations in the level of public capital across Spain‟s Provinces affected productivity levels over the period 1996-2005. The analysis is motivated by contemporary urban economics theory, involving a production function for the competitive sector of the economy („industry‟) which includes the level of composite services derived from „service‟ firms under monopolistic competition. The outcome is potentially increasing returns to scale resulting from pecuniary externalities deriving from internal increasing returns in the monopolistic competition sector. We extend the production function by also making (log) labour efficiency a function of (log) total public capital stock and (log) human capital stock, leading to a simple and empirically tractable reduced form linking productivity level to density of employment, human capital and public capital stock. The model is further extended to include technological externalities or spillovers across provinces. Using panel data methodology, we find significant elasticities for total capital stock and for human capital stock, and a significant impact for employment density. The finding that the effect of public capital is significantly different from zero, indicating that it has a direct effect even after controlling for employment density, is contrary to some of the earlier research findings which leave the question of the impact of public capital unresolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) in an animal model of schizophrenia based on transient glutathione deficit. The BSO treated rats were impaired in patrolling a maze or a homing table when adult, yet demonstrated preserved escape learning, place discrimination and reversal in a water maze task [37]. In the present work, BSO rats' performance in the water maze was assessed in conditions controlling for the available visual cues. First, in a completely curtained environment with two salient controlled cues, BSO rats showed little accuracy compared to control rats. Secondly, pre-trained BSO rats were impaired in reaching the familiar spatial position when curtains partially occluded different portions of the room environment in successive sessions. The apparently preserved place learning in a classical water maze task thus appears to require the stability and the richness of visual landmarks from the surrounding environment. In other words, the accuracy of BSO rats in place and reversal learning is impaired in a minimal cue condition or when the visual panorama changes between trials. However, if the panorama remains rich and stable between trials, BSO rats are equally efficient in reaching a familiar position or in learning a new one. This suggests that the BSO accurate performance in the water maze does not satisfy all the criteria for a cognitive map based navigation on the integration of polymodal cues. It supports the general hypothesis of a binding deficit in BSO rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregressive process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The Öltered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidenced for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suburbanization is changing the urban spatial structure and less monocentric metropolitan regions are becoming the new urban reality. Focused only on centers, most works have studied these spatial changes neglecting the role of transport infrastructure and its related location model, the “accessibility city”, in which employment and population concentrate in low-density settlements and close to transport infrastructure. For the case of Barcelona, we consider this location model and study the population spatial structure between 1991 and 2006. The results reveal a mix between polycentricity and the accessibility city, with movements away from the main centers, but close to the transport infrastructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific innovation covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.