806 resultados para Signal gain coefficient
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in cardiovascular medicine. However, insufficient image quality may compromise its diagnostic accuracy. We aimed to describe and validate standardized criteria to evaluate a) cine steady-state free precession (SSFP), b) late gadolinium enhancement (LGE), and c) stress first-pass perfusion images. These criteria will serve for quality assessment in the setting of the Euro-CMR registry. METHODS: Thirty-five qualitative criteria were defined (scores 0-3) with lower scores indicating better image quality. In addition, quantitative parameters were measured yielding 2 additional quality criteria, i.e. signal-to-noise ratio (SNR) of non-infarcted myocardium (as a measure of correct signal nulling of healthy myocardium) for LGE and % signal increase during contrast medium first-pass for perfusion images. These qualitative and quantitative criteria were assessed in a total of 90 patients (60 patients scanned at our own institution at 1.5T (n=30) and 3T (n=30) and in 30 patients randomly chosen from the Euro-CMR registry examined at 1.5T). Analyses were performed by 2 SCMR level-3 experts, 1 trained study nurse, and 1 trained medical student. RESULTS: The global quality score was 6.7±4.6 (n=90, mean of 4 observers, maximum possible score 64), range 6.4-6.9 (p=0.76 between observers). It ranged from 4.0-4.3 for 1.5T (p=0.96 between observers), from 5.9-6.9 for 3T (p=0.33 between observers), and from 8.6-10.3 for the Euro-CMR cases (p=0.40 between observers). The inter- (n=4) and intra-observer (n=2) agreement for the global quality score, i.e. the percentage of assignments to the same quality tertile ranged from 80% to 88% and from 90% to 98%, respectively. The agreement for the quantitative assessment for LGE images (scores 0-2 for SNR <2, 2-5, >5, respectively) ranged from 78-84% for the entire population, and 70-93% at 1.5T, 64-88% at 3T, and 72-90% for the Euro-CMR cases. The agreement for perfusion images (scores 0-2 for %SI increase >200%, 100%-200%,<100%, respectively) ranged from 81-91% for the entire population, and 76-100% at 1.5T, 67-96% at 3T, and 62-90% for the Euro-CMR registry cases. The intra-class correlation coefficient for the global quality score was 0.83. CONCLUSIONS: The described criteria for the assessment of CMR image quality are robust with a good inter- and intra-observer agreement. Further research is needed to define the impact of image quality on the diagnostic and prognostic yield of CMR studies.
Resumo:
Generating a diverse T cell memory population through vaccination is a promising strategy to overcome pathogen epitope variability and tolerance to tumor Ags. The effector and memory pool becomes broad in TCR diversity by recruiting high- and low-affinity T cells. We wanted to determine which factors dictate whether a memory T cell pool has a broad versus focused repertoire. We find that inflammation increases the magnitude of low- and high-affinity T cell responses equally well, arguing against a synergistic effect of TCR and inflammatory signals on T cell expansion. We dissect the differential effects of TCR signal strength and inflammation and demonstrate that they control effector T cell survival in a bim-dependent manner. Importantly, bim-dependent cell death is overcome with a high Ag dose in the context of an inflammatory environment. Our data define the framework for the generation of a broad T cell memory pool to inform future vaccine design.
Resumo:
Although chemokines and their receptors were initially identified as regulators of cell trafficking during inflammation and immune response, they have emerged as crucial players in all stages of tumor development, primary growth, migration, angiogenesis, and establishment as metastases in distant target organs. Neuroectodermal tumors regroup neoplasms originating from the embryonic neural crest cells, which display clinical and biological similarities. These tumors are highly malignant and rapidly progressing diseases that disseminate to similar target organs such as bone marrow, bone, liver and lungs. There is increasing evidence that interaction of several chemokine receptors with corresponding chemokine ligands are implicated in the growth and invasive characteristics of these tumors. In this review we summarize the current knowledge on the role of CXCL12 chemokine and its CXCR4 and CXCR7 receptors in the progression and survival of neuroectodermal tumors, with particular emphasis on neuroblastoma, the most typical and enigmatic neuroectodermal childhood tumor.
Resumo:
Stimulated echoes are widely used for imaging functional tissue parameters such as diffusion coefficient, perfusion, and flow rates. They are potentially interesting for the assessment of various cardiac functions. However, severe limitations of the stimulated echo acquisition mode occur, which are related to the special dynamic properties of the beating heart and flowing blood. To the well-known signal decay due to longitudinal relaxation and through-plane motion between the preparation and the read-out period of the stimulated echoes, additional signal loss is often observed. As the prepared magnetization is fixed with respect to the tissue, this signal loss is caused by the tissue deformation during the cardiac cycle, which leads to a modification of the modulation frequency of the magnetization. These effects are theoretically derived and corroborated by phantom and in vivo experiments.
Resumo:
Diet composition, in particular fat intake, has been suggested to be a risk factor for obesity in humans. Several mechanisms may contribute to explain the impact of fat intake on fat gain. One factor may be the low thermogenesis induced by a mixed meal rich in fat. In a group of 11 girls (10.1 +/- 0.3 yr), 6 obese (body mass index, 25.6 +/- 0.6 kg/m(2)), and 5 nonobese (body mass index, 19 +/- 1.6 kg/m(2)), we tested the hypothesis that a mixed meal rich in fat can elicit energy saving compared with an isocaloric and isoproteic meal rich in carbohydrate. The postabsorptive resting energy expenditure and the thermic effect of a meal (TEM) after a low fat (LF; 20% fat, 68% carbohydrate, and 12% protein) or an isocaloric (2500 kJ or 600 Cal) and isoproteic high fat (HF; 48% fat, 40% carbohydrate, and 12% protein) meal were measured by indirect calorimetry. Each girl repeated the test with a different, randomly assigned menu (HF or LF) 1 week after the first test. TEM, expressed as a percentage of energy intake was significantly higher after a LF meal than after a HF meal (6.5 +/- 0.7% vs. 4.3 +/- 0.4%; P < 0.01). The postprandial respiratory quotient (RQ) was significantly higher after a LF meal than after a HF meal (0.86 +/- 0.013 vs. 0.83 +/- 0.014; P < 0.001). The HF low carbohydrate meal induced a significantly lower increase in carbohydrate oxidation than the LF meal (20.3 +/- 6.2 vs. 61.3 +/- 7.8 mg/min; P < 0.001). On the contrary, fat oxidation was significantly higher after a HF meal than after a LF meal (-1.3 +/- 2.4 vs. -15.1 +/- 3.6 mg/min; P < 0.01). However, the postprandial fat storage was 8-fold higher after a HF meal than after a LF meal (17.2 +/- 1.7 vs. 1.9 +/- 1.8 g; P < 0.001). These results suggest that a high fat meal is able to induce lower thermogenesis and a higher positive fat balance than an isocaloric and isoproteic low fat meal. Therefore, diet composition per se must be taken into account among the various risk factors that induce obesity in children.
Resumo:
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.
Resumo:
CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different "hot spots," were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions.
Resumo:
Selostus: Lihassolutyypin ja lihassolun poikkipinta-alan yhteys sian kasvuun ja ruhon koostumukseen maatiaisessa ja yorkshiressa
Resumo:
Changes in the rate of growth and adiposity index (Quetelet index), calculated as weight/(length)2, kg/m2, were monitored from birth to 3 years in 19 premature babies (post-conceptional age 31.2 +/- 2 weeks) who were subjected during rapid growth (16 +/- 4 g/kg.day) to initial metabolic balance studies in the first weeks of life. These studies showed that the rate of fat accretion in these infants (3.3 +/- 0.9 g/kg.day) was substantially greater than that observed in fetuses of the same gestational age (2 g/kg.day) but the adiposity index was lower (9.6 +/- 1 kg/m2) than intrauterine values (11 kg/m2). Since at 6 months of age (corrected for gestational age at birth) the adiposity index was close to normality (103% of standard), the greater rate of fat accretion in early life contributed to progressively restore total body fat in premature babies. It is concluded that despite substantial fat deposition during the first weeks of life, the future evolution of these premature babies is favourable as judged from the normalization of adiposity index within the first 2 years of life.
Resumo:
OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.
Resumo:
Two mutually exclusive hypotheses have been put forward to explain the evolution and adaptive function of melanin-based color traits. According to sexual selection theory melanism is a directionally selected signal of individual quality, whereas theory on the maintenance of genetic polymorphism proposes that alternative melanin-based variants achieve equal fitness. Alpine swift (Apus melba) males and females have a conspicuous patch of white feathers on the breast with their rachis varying continuously from white to black, and hence the breast varies from white to striated. If this trait is a sexually selected signal of quality, its expression should be condition dependent and the degree of melanism directionally selected. If variation in melanism is a polymorphism, its expression should be genetically determined and fitness of melanin-based variants equal. We experimentally tested these predictions by exchanging eggs or hatchlings between randomly chosen nests and by estimating survival and reproduction in relation to melanism. We found that breast melanism is heritable and that the environment and body condition do not significantly influence its expression. Between 5 and 50 days of age nestlings were heavier and their wings longer when breast feathers of their biological father were blacker, and they also fledged at a younger age. This shows that aspects of offspring quality covary positively with the degree of melanism. However, this did not result in directional selection because nestling survival and recruitment in the local breeding population were not associated with father breast melanism. Furthermore, adult survival, age at first reproduction and probability of skipping reproduction did not covary with the degree of melanism. Genetic variation in breast melanism is therefore maintained either because nonmelanic males achieve fitness similar to melanic males via a different route than producing fast-growing offspring, or because the advantage of producing fast-growing offspring is not sufficiently pronounced to result in directional selection.
Resumo:
This paper presents a new method and circuit for the conversion of binary phase-shift keying (BPSK) signals into amplitude shift keying signals. The basic principles of the conversion method are the superharmonic injection and locking of oscillator circuits, and interference phenomena. The first one is used to synchronize the oscillators, while the second is used to generate an amplitude interference pattern that reproduces the original phase modulation. When combined with an envelope detector, the proposed converter circuit allows the coherent demodulation of BPSK signals without need of any explicit carrier recovery system. The time response of the converter circuit to phase changes of the input signal, as well as the conversion limits, are discussed in detail.
Resumo:
This paper demonstrates the feasibility of a new circuit for the conversion of binary phase-shift keying signals into amplitude-shift keying signals. In its simplest form, the converter circuit is composed by a power divider, a couple of second harmonic injection-locked oscillators, and a power combiner. The operation of the converter circuit relies on the frequency synchronization of both oscillators and the generation of an interference pattern by combining their outputs, which reproduces the original phase modulation. Two prototypes of the converter have been implemented. The first one is a hybrid version working in the 400-530-MHz frequency range. The second one has been implemented using multichip-module technology, and is intended to work in the 1.8-2.2-GHz frequency range.