900 resultados para Sheet metal production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous silica supported Ni nanoparticles have been investigated for hydrogen production from ethanol steam reforming. Ethanol reforming is structure-sensitive over Ni, and also dependent on support mesostructure; three-dimensional KIT-6 possessing interconnected mesopores offers superior metal dispersion, steam reforming activity, and on-stream stability against deactivation compared with a two-dimensional SBA-15 support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of textiles is an open area of scientific research, which for its variety of material components and physical chemical diversity of conditions, makes a field of interest for scientific studies in the cultural heritage field. Archaeological/historical textiles offer the possibility to carry out studies on organic materials such as fibers, adhesion elements, dyes, paper, etc., as well as on inorganic compounds for instance metals, alloys, precious stones and other added ornamentation. That variety of composition, allow to use a combination of analytical techniques to solve the questions coming from the object in an archaeometric research. One kind of textile object that provides a valuable cultural information because of its linguistic representation employed by its carrier societies, are the flags/banners/emblems, objects made with a nonverbal communication purpose. As long as depending on the use and/or purpose of each object, varies both the materials/techniques used in its production and its iconography (style, color, emblem, shape), its study gives the possibility to extract information through their materials and manufacturing techniques about a temporal-spatial frame, a particular event or a specific character. The flags/banners have been used since the eleventh century as representative objects of power, hierarchy, social or military organization, or as communicative media. The use of these objects has been spread throughout the world, possibly due to its easy interpretation and/or appropriation by different societies, making it part of their own culture. The flags as symbols of territorial control, using emblems that represent a family, order or army, were introduced to the New World (America) with the arrival of the European conquerors at the end of the fifteenth century. Flags/banners representing the Royal dominion over conquered territories, the Catholic Church and conquistadors’ armies were the first to arrive. One of those flags that have endured over time, that have an invaluable cultural meaning for both American and Iberian societies, is the so-called Francisco Pizarro’s Banner of Arms. It is a textile object with metal threads decoration over a Royal emblem. According to historical sources, this object was used by Francisco Pizarro in 1532 on the conquest process of Peru, after received the permission by King Charles V to on behalf of him, to conquer the lands of the New World today known as Peru. After Pizarro’s control of the Inca territory, it is believed that Pizarro left his banner on top of the Inca’s Sun’s Temple as symbol of his rule. Centuries later, in the America libertarian campaigns, General Sucre, military at charge of the independence army in Peru, reports have found what he considered the Pizarro’s Banner, sending it to Bogotá as a symbol of victory, being kept since that time until today by the National Museum of Colombia. Due to historical discrepancies in the different movements of the so-called Pizarro’s Banner of Arms, its real meaning has been under discussion and because of the passage of time its physical condition has suffer deterioration. That is because its scientific study is now an interesting case study to respond to both historical and conservation questions of it. Through a collaboration with the National Museum of Colombia, a set of 25 samples of so-called Pizarro’s Banner of Arms were collected, covering the various components and areas from the object of study. These samples were subjected to analytical studies for physical and chemical characterization. Microscopic observation, VSEM-EDS analysis, Raman spectroscopy, chromatographic analysis (HPLC-MS, GCMS) and radiocarbon dating were done. Similarly, was sought through a direct in situ physical inspection to the object and through a research into historical sources, adequate information to solve the object’s problems. Results obtained allowed to identify as silk the textile used in the elaboration of the Banner’s fabric, as well as the use of natural dyes for dyeing the fibers used on the emblem: use of cochineal and brazil wood as a source of red, luteolin plant-based for yellow color, indigotine plant-based for blue, and a mixture of yellow and blue dyes for green were identified. Similarly, the use of animal glue in the manufacturing process and the use of rag paper was evident. The metal threads study from the Banner give a confirmation to a silver core wire gilded with a thin gold sheet, being flattened and entwined with silk threads for their use. Finally, using the radiocarbon results, it was possible to postulate with huge accuracy that the Banner date manufacture was between the XV-XVI century and subject to restoration processes with addition of textiles in modern times. Together with, was evident that the state of degradation of the fabric is due to natural degradation in the silk fibers, having that its color has faded and its mechanical properties decreased, leading to loss of rigidity and disappearance of the physical structure. Similarly, it was clear the original colors of the emblem and highlight problems of detachment of paper due to crystallization of the adhesive. In the same way, was found that the metal threads suffer corrosion by sulfur and detachment of its crystals. Finally, combining the analytical results and the historical sources data found from the so-called Francisco Pizarro’s Banner of Arms, allows to postulate that its manufacture process was done in Europe employing precious materials to obtain a long-life object with a deep message for its viewers. Also, the data obtained helps to support the possible idea that the object was employed by Francisco Pizarro in the Peru conquest process. However, by the symbols present in the object, its elaboration date and materials, this object its clearly unique in its kind, and the most important, by its linguistic message, does not represent to Francisco Pizarro or his army, meanwhile, represents the Spanish crown. Therefore, instead to be labeled as Francisco Pizarro’s Banner of Arms, it should be called the Colonial Royal Banner of Charles V in the New World; RESUMEN: El estudio de textiles es un área abierta de investigación científica, la cual por su variedad de componentes materiales y la diversidad de condiciones físico-químicas presentes en estos objetos, lo hace un campo de interés para estudios científicos en el patrimonio cultural. Los textiles arqueológicos/históricos brindan la posibilidad de realizar estudios en materiales orgánicos como fibras, elementos de adhesión, tinturas, papel, etc., e inorgánicos como metales, aleaciones, piedras preciosas y demás materiales decorativos añadidos. Por su variedad de composición, es posible emplear diversas técnicas analíticas para resolver aquellas preguntas propias del objeto en una investigación arqueométrica. Uno de los objetos textiles que brinda gran información cultural debido a su representación lingüística empleada por las sociedades portadoras, son las banderas/estandartes/emblemas. Donde varía dependiendo de su uso y/o propósito, los materiales empleados en su elaboración, al igual que su iconografía (estilo, color, emblema, forma). El estudio de estos objetos construidos con un propósito de comunicación no verbal, da la posibilidad de extraer información a través de sus materiales y técnicas de elaboración sobre un rango temporal-espacial, un evento determinado en la historia o incluso a un personaje en específico. Las banderas han sido empleadas desde el siglo XI como objetos representativos de poder, jerarquía, organización social o militar, o como medio de comunicación. El uso de estos objetos se ha extendido a lo largo del mundo posiblemente debido a su fácil interpretación y/o apropiación por distintas sociedades, haciéndolo parte de su cultura. Las banderas como símbolos de control territorial, empleando símbolos que representan a una familia, orden o armada fueron introducidas a el Nuevo Mundo (América) con la llegada de los conquistadores europeos al final del siglo XV. Las banderas/estandartes que representaban el dominio Real sobre territorios dominados, la iglesia católica y las banderas de ejércitos y/o conquistadores fueron las primeras en llegar al nuevo mundo. Una de aquellas banderas que ha soportado el paso del tiempo, teniendo un gran valor cultural tanto para las sociedades americanas como para las ibéricas, es el denominado Estandarte de armas de Francisco Pizarro. Siendo un objeto textil con decoración en hilos metálicos sobre un emblema Real. De acuerdo a fuentes históricas, este objeto fue usado por Francisco Pizarro en 1532 en el proceso de conquista del Perú, quien recibe por parte del Rey Carlos V el poder para que, en su nombre, Pizarro pueda conquistar las tierras del nuevo mundo hoy conocidas como Perú. Luego del dominio de Pizarro sobre el territorio Inca, se cree que Pizarro dejó su estandarte en la cima del templo Inca del sol como símbolo de su control. Siglos más tarde, en las campañas libertarias de América, el General Sucre, militar encargado de la armada independentista en Perú, reporta haber encontrado lo que él considera como el estandarte de Pizarro, enviándolo a Bogotá como muestra de victoria, siendo custodiada desde ese momento por el Museo Nacional de Colombia hasta la actualidad. Debido a discrepancias históricas, el verdadero significado del llamado estandarte de Pizarro ha sido objeto de discusión y debido del pasar del tiempo su estado de conservación se ha deteriorado. Dejando de este modo, un caso de estudio interesante para que por medio de estudios científicos al objeto se pueda dar respuesta a preguntas tanto históricas como de conservación del mismo. De este modo, por medio de una colaboración con el Museo Nacional de Colombia, se obtuvo un juego de 25 muestras del llamado Estandarte de armas de Francisco Pizarro, abarcando los diferentes componentes y áreas del objeto de estudio. Dichas muestras fueron sometidas a estudios analíticos para su caracterización físico-química. Análisis de observación al microscopio, análisis VSEM-EDS, espectroscopia Raman, análisis cromatográficos (HPLC-MS, GC-MS) y datación por radiocarbono catorce fueron realizados. Del mismo modo, por medio de una inspección física al objeto in situ y una profunda investigación en fuentes históricas del mismo, se buscó la información adecuada para resolver sus problemáticas. Los resultados obtenidos permitieron identificar como seda el textil empleado en la elaboración del estandarte, así como el uso de colorantes naturales para teñir las fibras en el emblema: uso de cochinilla y palo de Brasil como fuente del color rojo, plantas a base de luteolin para el color amarillo, plantas a base de indigotina para el color azul y mezcla de colorantes amarillos y azules para el color verde fueron identificadas. Del mismo modo se evidencio el uso de adhesivos animales y el uso de papel de trapos en el proceso de manufactura. El estudio de los hilos metálicos, permitió evidenciar el uso de alambres con núcleos de plata con un fino recubrimiento de oro en su exterior, siendo aplanados y entrelazados con hilos de seda para su uso. Finalmente usando la datación por radiocarbono, fue posible conocer con alta precisión que el estandarte fue elaborado entre los siglos XV-XVI y sufrió procesos de restauración con añadidura de textiles en tiempos modernos. Junto a lo anterior, es posible postular que el estado de degradación de la tela es debido a degradación natural en las fibras de seda, teniendo así que su color se ha desvanecido y sus propiedades mecánicas disminuidas, conllevando a perdida de rigidez y desaparición de la estructura. Del mismo modo se pudo conocer los colores originales del emblema y evidenciar problemas de desprendimiento del papel debido a cristalización del adhesivo. Asimismo, se comprobó que los hilos metálicos presentan corrosión por azufre y desprendimiento de sus cristales. Finalmente, combinando los resultados analíticos y la información de fuentes históricas encontradas del llamado Estandarte de armas de Francisco Pizarro, se puede postular que su elaboración fue realizada en Europa, usando materiales preciosos para obtener un objeto de larga vida con un profundo mensaje para sus observadores. También, los datos obtenidos ayudan a dar soporte la posible idea de que este objeto fue usado por Francisco Pizarro en el proceso de conquista del Perú. Sin embargo, debido a los símbolos presentes en el objeto, fecha y materiales de elaboración, este objeto es claramente único en su tipo, y lo más importante, por su mensaje lingüístico, este no representa a Francisco Pizarro o su armada, al contrario, representa a la Corona de España. Por ende, en vez de denominarse como Estandarte de armas de Francisco Pizarro, este objeto debería nombrarse como el Estandarte Real de la Colonia de Carlos V en el Nuevo Mundo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, with the aim to tackle several approaches towards sustainable chemistry, two reactions were studied: aerobic photo-oxidation of biomass derived 5-hydroxymethyl-2-furfural (HMF), and anaerobic photo-reforming of glycerol known as a by-product in biodiesel industry, towards production of chemicals and hydrogen. Solar-assisted reactions were performed by means of heterogeneous photocatalysis, in mild conditions such as atmospheric pressure, room temperature and water as a benign solvent. Titanium dioxide (lab-synthesized and commercial) was used as a photo-active catalyst, which surface was modified by introducing different metal (e.g. Au, Au-Cu, Pt) and metal oxide (e.g. NiO) nanoparticles. The prepared materials were characterized by XRD, DRS, BET, TEM, SEM, RAMAN and other techniques. The influence of the support, the size and type of the deposited metal and metal oxide nanoparticles on the photo-catalytic transformation of HMF and glycerol was evaluated. In the case of HMF, the influence of the base addition and the oxygen content on the reaction selectivity was also studied. The effect of the crystalline phase composition and morphology of TiO2 in the glycerol photo-reforming reaction was assessed as well. The surface of the synthesized TiO2 nano-powders was investigated by means of Surface Organometallic Chemistry (SOMC) approach. In particular, the surface was characterized by chemical titration and DRIFT techniques. Furthermore, the SOMC concept allowed preparing of well-dispersed Pt nanoparticles on the TiO2 surface. The photo-catalytic activity of this sample in the glycerol photo-reforming process was tested and compared to that of other Pt-containing catalysts prepared by conventional technics. In view of avoiding the agglomeration and sedimentation of suspended titania powders in water media, thick films of synthesized and commercial TiO2 were deposited on a conductive substrate using screen-printing technique. The prepared electrodes were characterized by profilometry, SEM, XRD, optical, electrochemical and photo-electrochemical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the aerospace, automotive, printing, and sports industries, the development of hybrid Carbon Fiber Reinforced Polymer (CFRP)-metal components is becoming increasingly important. The coupling of metal with CFRP in axial symmetric components results in reduced production costs and increased mechanical properties such as bending, torsional stiffness, mass reduction, damping, and critical speed compared to the single material-built ones. In this thesis, thanks to a novel methodology involving a rubbery/viscoelastic interface layer, several hybrid aluminum-CFRP prototype tubes were produced. Besides, an innovative system for the cure of the CFRP part has been studied, analyzed, tested, and developed in the company that financed these research activities (Reglass SRL, Minerbio BO, Italy). The residual thermal stresses and strains have been investigated with numerical models based on the Finite Element Method (FEM) and compared with experimental tests. Thanks to numerical models, it was also possible to reduce residual thermal stresses by optimizing the lamination sequence of CFRP and determining the influence of the system parameters. A novel software and methodology for evaluating mechanical and damping properties of specimens and tubes made in CFRP were also developed. Moreover, to increase the component's damping properties, rubber nanofibers have been produced and interposed throughout the lamination of specimens. The promising results indicated that the nanofibrous mat could improve the material damping factor over 77% and be adopted in CFRP components with a negligible increment of weight or losing mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the most recent years, Additive Manufacturing (AM) has drawn the attention of both academic research and industry, as it might deeply change and improve several industrial sectors. From the material point of view, AM results in a peculiar microstructure that strictly depends on the conditions of the additive process and directly affects mechanical properties. The present PhD research project aimed at investigating the process-microstructure-properties relationship of additively manufactured metal components. Two technologies belonging to the AM family were considered: Laser-based Powder Bed Fusion (LPBF) and Wire-and-Arc Additive Manufacturing (WAAM). The experimental activity was carried out on different metals of industrial interest: a CoCrMo biomedical alloy and an AlSi7Mg0.6 alloy processed by LPBF, an AlMg4.5Mn alloy and an AISI 304L austenitic stainless steel processed by WAAM. In case of LPBF, great attention was paid to the influence that feedstock material and process parameters exert on hardness, morphological and microstructural features of the produced samples. The analyses, targeted at minimizing microstructural defects, lead to process optimization. For heat-treatable LPBF alloys, innovative post-process heat treatments, tailored on the peculiar hierarchical microstructure induced by LPBF, were developed and deeply investigated. Main mechanical properties of as-built and heat-treated alloys were assessed and they were well-correlated to the specific LPBF microstructure. Results showed that, if properly optimized, samples exhibit a good trade-off between strength and ductility yet in the as-built condition. However, tailored heat treatments succeeded in improving the overall performance of the LPBF alloys. Characterization of WAAM alloys, instead, evidenced the microstructural and mechanical anisotropy typical of AM metals. Experiments revealed also an outstanding anisotropy in the elastic modulus of the austenitic stainless-steel that, along with other mechanical properties, was explained on the basis of microstructural analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for flexible and low-cost electronics has driven research towards the study of novel semiconducting materials to replace traditional semiconductors like silicon and germanium, which are limited by mechanical rigidity and high production cost. Some of the most promising semiconductors in this sense are metal halide perovskites (MHPs), which combine low-cost fabrication and solution processability with exceptional optoelectronic properties like high absorption coefficient, long charge carrier lifetime, and high mobility. These properties, combined with an impressive effort by many research groups around the world, have enabled the fabrication of solar cells with record-breaking efficiencies, and photodetectors with better performance than commercial ones. However, MHP devices are still affected by issues that are hindering their commercialization, such as degradation under humidity and illumination, ion migration, electronic defects, and limited resistance to mechanical stress. The aim of this thesis work is the experimental characterization of these phenomena. We investigated the effects of several factors, such as X-ray irradiation, exposure to environmental gases, and atmosphere during synthesis, on the optoelectronic properties of MHP single crystals. We achieved this by means of optical spectroscopy, electrical measurements, and chemical analyses. We identified the cause of mechanical delamination in MHP/silicon tandem solar cells by atomic force microscopy measurements. We characterized electronic defects and ion migration in MHP single crystals by applying for the first time the photo-induced current transient spectroscopy technique to this class of materials. This research allowed to gain insight into both intrinsic defects, like ion migration and electron trapping, and extrinsic defects, induced by X-ray irradiation, mechanical stress, and exposure to humidity. This research paves the way to the development of methods that heal and passivate these defects, enabling improved performance and stability of MHP optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islet neogenesis-associated protein (INGAP) is a peptide found in pancreatic exocrine-, duct- and islet- non-β-cells from normal hamsters. Its increase induced by either its exogenous administration or by the overexpression of its gene enhances β-cell secretory function and increases β-cell mass by a combination of stimulation of cell replication and islet neogenesis and reduction of β-cell apoptosis. We studied the potential modulatory role of endogenous INGAP in insulin secretion using two different experimental approaches. Hamster islets transfected with INGAP-small interfering RNA (INGAP-siRNA) were used to study glucose-stimulated insulin secretion (GSIS). In parallel, freshly isolated islets were incubated with high glucose and the same concentration of either a specific anti-INGAP rabbit serum or normal rabbit serum. INGAP-siRNA transfected islets reduced their INGAP mRNA and protein content by 35.1% and 47.2%, respectively whereas GSIS decreased by 25.8%. GSIS by transfected islets attained levels comparable to those recorded in control islets when INGAP pentadecapeptide (INGAP-PP) was added to the culture medium. INGAP antibody in the medium decreased significantly GSIS in a dose-dependent manner. These results indicate that endogenous INGAP plays a physiological positive modulatory role in insulin secretion, supporting its possible use in the treatment of prediabetes and Type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This clinical study has investigated the antigenic activity of bacterial contents from exudates of acute apical abscesses (AAAs) and their paired root canal contents regarding the stimulation capacity by levels of interleukin (IL)-1 beta and tumor necrosis factor alpha (TNF-α) throughout the root canal treatment against macrophage cells. Paired samples of infected root canals and exudates of AAAs were collected from 10 subjects. Endodontic contents were sampled before (root canal sample [RCS] 1) and after chemomechanical preparation (RCS2) and after 30 days of intracanal medication with calcium hydroxide + chlorhexidine gel (Ca[OH]2 + CHX gel) (RCS3). Polymerase chain reaction (16S rDNA) was used for detection of the target bacteria, whereas limulus amebocyte lysate was used to measure endotoxin levels. Raw 264.7 macrophages were stimulated with AAA exudates from endodontic contents sampled in different moments of root canal treatment. Enzyme-linked immunosorbent assays were used to measure the levels of TNF-α and IL-1 beta. Parvimonas micra, Porphyromonas endodontalis, Dialister pneumosintes, and Prevotella nigrescens were the most frequently detected species. Higher levels of endotoxins were found in samples from periapical exudates at RCS1 (P < .005). In fact, samples collected from periapical exudates showed a higher stimulation capacity at RCS1 (P < .05). A positive correlation was found between endotoxins from exudates with IL-1 beta (r = 0.97) and TNF-α (r = 0.88) production (P < .01). The significant reduction of endotoxins and bacterial species achieved by chemomechanical procedures (RCS2) resulted in a lower capacity of root canal contents to stimulate the cells compared with that at RCS1 (P < .05). The use of Ca(OH)2 + CHX gel as an intracanal medication (RCS3) improved the removal of endotoxins and bacteria from infected root canals (P < .05) whose contents induced a lower stimulation capacity against macrophages cells at RCS1, RCS2, and RCS3 (P < .05). AAA exudates showed higher levels of endotoxins and showed a greater capacity of macrophage stimulation than the paired root canal samples. Moreover, the use of intracanal medication improved the removal of bacteria and endotoxins from infected root canals, which may have resulted in the reduction of the inflammatory potential of the root canal content.