896 resultados para Sequential Quadratic Programming
Resumo:
Virtual Laboratories are an indispensablespace for developing practical activities in a Virtual Environment. In the field of Computer and Software Engineering different types of practical activities have tobe performed in order to obtain basic competences which are impossible to achieve by other means. This paper specifies an ontology for a general virtual laboratory.The proposed ontology provides a mechanism to select the best resources needed in a Virtual Laboratory once a specific practical activity has been defined and the maincompetences that students have to achieve in the learning process have been fixed. Furthermore, the proposed ontology can be used to develop an automatic and wizardtool that creates a Moodle Classroom using the practical activity specification and the related competences.
Resumo:
Peer-reviewed
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to programs mall devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
This work proposes a sequential injection analysis (SIA) system for the spectrophotometric determination of norfloxacin (NOR) and ciprofloxacin (CIP) in pharmaceutical formulations. The methodology was based on the reaction of these drugs with p-(dimethylamino)cinnamaldehyde in micellar medium, producing orange colored products (λmax = 495 nm). Beer´s law was obeyed in the concentration range from 2.75x10-5 to 3.44x10-4 mol L-1 and 3.26x10-5 to 3.54x10-4 mol L-1 for NOR and CIP, respectively and sampling rate was 25 h-1. Commercial samples were analyzed and results obtained through the proposed method were in good agreement with those obtained using the reference procedure for a 95% confidence level.
Resumo:
A qualitative spot-test and tandem quantitative analysis of dipyrone in the bulk drug and in pharmaceutical preparations is proposed. The formation of a reddish-violet color indicates a positive result. In sequence a quantitative procedure can be performed in the same flask. The quantitative results obtained were statistically compared with those obtained with the method indicated by the Brazilian Pharmacopoeia, using the Student's t and the F tests. Considering the concentration in a 100 µL aliquot, the qualitative visual limit of detection is about 5×10-6 g; instrumental LOD ≅ 1.4×10-4 mol L-1 ; LOQ ≅ 4.5×10-4 mol L-1.
Resumo:
The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.
Resumo:
Western societies have been faced with the fact that overweight, impaired glucose regulation and elevated blood pressure are already prevalent in pediatric populations. This will inevitably mean an increase in later manifestations of cardio-metabolic diseases. The dilemma has been suggested to stem from fetal life and it is surmised that the early nutritional environment plays an important role in the process called programming. The aim of the present study was to characterize early nutritional determinants associating with cardio-metabolic risk factors in fetuses, infants and children. Further, the study was designated to establish whether dietary counseling initiated in early pregnancy can modify this cascade. Healthy mother-child pairs (n=256) participating in a dietary intervention study were followed from early pregnancy to childhood. The intervention included detailed dietary counseling by a nutritionist targeting saturated fat intake in excess of recommendations and fiber consumption below recommendations. Cardio-metabolic programming was studied by characterizing the offspring’s cardio-metabolic risk factors such as over-activation of the autonomic nervous system, elevated blood pressure and adverse metabolic status (e.g. serum high split proinsulin concentration). Fetal cardiac sympathovagal activation was measured during labor. Postnatally, children’s blood pressure was measured at six-month and four-year follow-up visits. Further, infants’ metabolic status was assessed by means of growth and serum biomarkers (32-33 split proinsulin, leptin and adiponectin) at the age of six months. This study proved that fetal cardiac sympathovagal activity was positively associated with maternal pre-pregnancy body mass index indicating adverse cardio-metabolic programming in the offspring. Further, a reduced risk of high split proinsulin in infancy and lower blood pressure in childhood were found in those offspring whose mothers’ weight gain and amount and type of fats in the diet during pregnancy were as recommended. Of note, maternal dietary counseling from early pregnancy onwards could ameliorate the offspring’s metabolic status by reducing the risk of high split proinsulin concentration, although it had no effect on the other cardio-metabolic markers in the offspring. At postnatal period breastfeeding proved to entail benefits in cardio-metabolic programming. Finally, the recommended dietary protein and total fat content in the child’s diet were important nutritional determinants reducing blood pressure at the age of four years. The intrauterine and immediate postnatal period comprise a window of opportunity for interventions aiming to reduce the risk of cardio-metabolic disorders and brings the prospect of achieving health benefits over one generation.
Resumo:
The development of correct programs is a core problem in computer science. Although formal verification methods for establishing correctness with mathematical rigor are available, programmers often find these difficult to put into practice. One hurdle is deriving the loop invariants and proving that the code maintains them. So called correct-by-construction methods aim to alleviate this issue by integrating verification into the programming workflow. Invariant-based programming is a practical correct-by-construction method in which the programmer first establishes the invariant structure, and then incrementally extends the program in steps of adding code and proving after each addition that the code is consistent with the invariants. In this way, the program is kept internally consistent throughout its development, and the construction of the correctness arguments (proofs) becomes an integral part of the programming workflow. A characteristic of the approach is that programs are described as invariant diagrams, a graphical notation similar to the state charts familiar to programmers. Invariant-based programming is a new method that has not been evaluated in large scale studies yet. The most important prerequisite for feasibility on a larger scale is a high degree of automation. The goal of the Socos project has been to build tools to assist the construction and verification of programs using the method. This thesis describes the implementation and evaluation of a prototype tool in the context of the Socos project. The tool supports the drawing of the diagrams, automatic derivation and discharging of verification conditions, and interactive proofs. It is used to develop programs that are correct by construction. The tool consists of a diagrammatic environment connected to a verification condition generator and an existing state-of-the-art theorem prover. Its core is a semantics for translating diagrams into verification conditions, which are sent to the underlying theorem prover. We describe a concrete method for 1) deriving sufficient conditions for total correctness of an invariant diagram; 2) sending the conditions to the theorem prover for simplification; and 3) reporting the results of the simplification to the programmer in a way that is consistent with the invariantbased programming workflow and that allows errors in the program specification to be efficiently detected. The tool uses an efficient automatic proof strategy to prove as many conditions as possible automatically and lets the remaining conditions be proved interactively. The tool is based on the verification system PVS and i uses the SMT (Satisfiability Modulo Theories) solver Yices as a catch-all decision procedure. Conditions that were not discharged automatically may be proved interactively using the PVS proof assistant. The programming workflow is very similar to the process by which a mathematical theory is developed inside a computer supported theorem prover environment such as PVS. The programmer reduces a large verification problem with the aid of the tool into a set of smaller problems (lemmas), and he can substantially improve the degree of proof automation by developing specialized background theories and proof strategies to support the specification and verification of a specific class of programs. We demonstrate this workflow by describing in detail the construction of a verified sorting algorithm. Tool-supported verification often has little to no presence in computer science (CS) curricula. Furthermore, program verification is frequently introduced as an advanced and purely theoretical topic that is not connected to the workflow taught in the early and practically oriented programming courses. Our hypothesis is that verification could be introduced early in the CS education, and that verification tools could be used in the classroom to support the teaching of formal methods. A prototype of Socos has been used in a course at Åbo Akademi University targeted at first and second year undergraduate students. We evaluate the use of Socos in the course as part of a case study carried out in 2007.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
In this thesis, simple methods have been sought to lower the teacher’s threshold to start to apply constructive alignment in instruction. From the phases of the instructional process, aspects that can be improved with little effort by the teacher have been identified. Teachers have been interviewed in order to find out what students actually learn in computer science courses. A quantitative analysis of the structured interviews showed that in addition to subject specific skills and knowledge, students learn many other skills that should be mentioned in the learning outcomes of the course. The students’ background, such as their prior knowledge, learning style and culture, affects how they learn in a course. A survey was conducted to map the learning styles of computer science students and to see if their cultural background affected their learning style. A statistical analysis of the data indicated that computer science students are different learners than engineering students in general and that there is a connection between the student’s culture and learning style. In this thesis, a simple self-assessment scale that is based on Bloom’s revised taxonomy has been developed. A statistical analysis of the test results indicates that in general the scale is quite reliable, but single students still slightly overestimate or under-estimate their knowledge levels. For students, being able to follow their own progress is motivating, and for a teacher, self-assessment results give information about how the class is proceeding and what the level of the students’ knowledge is.
Resumo:
Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
In this work it is presented a systematic procedure for constructing the solution of a large class of nonlinear conduction heat transfer problems through the minimization of quadratic functionals like the ones usually employed for linear descriptions. The proposed procedure gives rise to an efficient and easy way for carrying out numerical simulations of nonlinear heat transfer problems by means of finite elements. To illustrate the procedure a particular problem is simulated by means of a finite element approximation.