890 resultados para SOLUBLE GUANYLYL CYCLASE
Resumo:
PURPOSE: To evaluate serum soluble Flt-1 (sFlt-1) in age-related degeneration (AMD) patients.
DESIGN: Case control study.
METHODS: Fifty-six non-AMD participants, fifty-three early AMD patients and ninety-seven neovascular AMD patients from Belfast in Northern Ireland. Serum samples were collected from each patient. Serum sFlt-1 was measured by human sVEGFR1/sFlt-1 ELISA kit. The results were analyzed by Excel and SPSS.
RESULTS: Serum sFlt-1 concentration of non-AMD, early AMD, and neovascular AMD were 90.8±2.9 pg/mL (±SEM), 88.2±2.6 pg/mL and 79.9±2.2 pg/mL. sFlt-1 from neovascular AMD patients was significantly decreased compared to non-AMD and early AMD patients (ANOVA, p<0.01). For each 10 point increase in sFlt-1, the odds for having neovascular AMD compared with non-AMD and neovascular AMD decreases by 27.8% OR=0.722 (95% CI: 0.588-0.888, p=0.002) and 27.0% OR=0.730 (95% CI: 0.594-0.898, p=0.003), respectively. In patients over 73 years of age, serum sFlt-1 <80 pg/mL was associated with a >6-fold higher risk of neovascular AMD.
CONCLUSIONS: Reduced serum sFlt-1 differentiates those patients with neovascular AMD from both early AMD and non-AMD participants. In those aged over 73, serum sFlt <80 pg/mL seems to indicate a particularly high risk of neovascular AMD. Our results indicate serum sFlt-1 could be a biomarker for development of neovascular AMD.
Resumo:
Objectives: To develop an epirubicin-loaded, water-soluble mucoadhesive gels that have the correct rheological properties to facilitate their delivery into the bladder via a catheter, while allowing for their spread across the bladder wall with limited expansion of the bladder and increasing the retention of epirubicin in the bladder and flushing with urine.
Methods: Epirubicin-loaded hydroxyl ethyl cellulose (HEC) and hydroxy propyl methyl cellulose (HPMC) gels were manufactured and tested for their rheological properties. Their ability to be pushed through a catheter was also assessed as was their in-vitro drug release, spreading in a bladder and retention of epirubicin after flushing with simulated urine.
Key findings: Epirubicin drug release was viscosity-dependent. The 1 and 1.5% HEC gels and the 1, 1.5 and 2% HPMC gels had the correct viscosity to be administered through a model catheter and spread evenly across the bladder wall under the pressure of the detrusor muscle. The epirubicin-loaded gels had an increased retention time in the bladder when compared with a standard intravesical solution of epirubicin, even after successive flushes with simulated urine.
Conclusion: The increased retention of epirubicin in the bladder by the HEC and HPMC gels warrant further investigation, using an in-vivo model, to assess their potential for use as treatment for non-muscle-invasive bladder cancer.
Stimulation of adenylate cyclase activity in isolated ventricular cardiomyocytes by secretin and VIP
Resumo:
The title process comprises admixing cellulose with an ionic liq. capable of solvating or dissolving at least some of the cellulose, the ionic liq. being a compd. comprised solely of cations and anions (e.g., 1-ethyl-3-methylimidazolium sulfate) and which exists in a liq. state at a temp. at or below 150°, and in which the anions are selected from sulfate, hydrogen sulfate and nitrate; and treating the resulting solvate or soln. with an acid in the presence of water, the acid having a pKa in water of less than 2 at 25°. [on SciFinder(R)]
Resumo:
The title process comprises admixing cellulose with an ionic liq. capable of solvating or dissolving at least some of the cellulose, the ionic liq. being a compd. comprised solely of cations and anions (e.g., 1-ethyl-3-methylimidazolium sulfate) and which exists in a liq. state at a temp. at or below 150°, the cations in the ionic liq. having the general formula R1Z(R2)(R3)R4: in which Z represents a nitrogen or phosphorus atom, R1 represents a Me or Et group, each of R2 and R3, which may be the same or different, is selected from C4-8alkyl, optionally-substituted benzyl, optionally-substituted Ph, and C5-7cycloalkyl, and R4 represents C1-8 alkyl, optionally-substituted benzyl, optionally-substituted Ph or C5-7cyclohexyl; in which the optional substituents on a benzyl or Ph ring are one, two or three substituents selected from C1-4alkyl or alkoxy groups, halogen atoms and nitro groups; and treating the resulting solvate or soln. with an acid in the presence of water, the acid having a pKa in water of less than 2 at 25°. [on SciFinder(R)]
Resumo:
Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.
Resumo:
Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&[micro] and 7&[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku™, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar™ Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva™, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.
Resumo:
The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.
Resumo:
The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here we show that Hg(0) beads interact with soil or manganese oxide solids and x-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that after reacting with a composite soil, > 20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, > 700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.