892 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Este trabalho visa contribuir para o desenvolvimento de um sistema de visão multi-câmara para determinação da localização, atitude e seguimento de múltiplos objectos, para ser utilizado na unidade de robótica do INESCTEC, e resulta da necessidade de ter informação externa exacta que sirva de referência no estudo, caracterização e desenvolvimento de algoritmos de localização, navegação e controlo de vários sistemas autónomos. Com base na caracterização dos veículos autónomos existentes na unidade de robótica do INESCTEC e na análise dos seus cenários de operação, foi efectuado o levantamento de requisitos para o sistema a desenvolver. Foram estudados os fundamentos teóricos, necessários ao desenvolvimento do sistema, em temas relacionados com visão computacional, métodos de estimação e associação de dados para problemas de seguimento de múltiplos objectos . Foi proposta uma arquitectura para o sistema global que endereça os vários requisitos identi cados, permitindo a utilização de múltiplas câmaras e suportando o seguimento de múltiplos objectos, com ou sem marcadores. Foram implementados e validados componentes da arquitectura proposta e integrados num sistema para validação, focando na localização e seguimento de múltiplos objectos com marcadores luminosos à base de Light-Emitting Diodes (LEDs). Nomeadamente, os módulos para a identi cação dos pontos de interesse na imagem, técnicas para agrupar os vários pontos de interesse de cada objecto e efectuar a correspondência das medidas obtidas pelas várias câmaras, método para a determinação da posição e atitude dos objectos, ltro para seguimento de múltiplos objectos. Foram realizados testes para validação e a nação do sistema implementado que demonstram que a solução encontrada vai de encontro aos requisitos, e foram identi cadas as linhas de trabalho para a continuação do desenvolvimento do sistema global.
Resumo:
The Casa da Música Foundation, responsible for the management of Casa da Música do Porto building, has the need to obtain statistical data related to the number of building’s visitors. This information is a valuable tool for the elaboration of periodical reports concerning the success of this cultural institution. For this reason it was necessary to develop a system capable of returning the number of visitors for a requested period of time. This represents a complex task due to the building’s unique architectural design, characterized by very large doors and halls, and the sudden large number of people that pass through them in moments preceding and proceeding the different activities occurring in the building. To achieve the technical solution for this challenge, several image processing methods, for people detection with still cameras, were first studied. The next step was the development of a real time algorithm, using OpenCV libraries and computer vision concepts,to count individuals with the desired accuracy. This algorithm includes the scientific and technical knowledge acquired in the study of the previous methods. The themes developed in this thesis comprise the fields of background maintenance, shadow and highlight detection, and blob detection and tracking. A graphical interface was also built, to help on the development, test and tunning of the proposed system, as a complement to the work. Furthermore, tests to the system were also performed, to certify the proposed techniques against a set of limited circumstances. The results obtained revealed that the algorithm was successfully applied to count the number of people in complex environments with reliable accuracy.
Resumo:
in RoboCup 2007: Robot Soccer World Cup XI
Resumo:
Proceedings of the International Conference on Computer Vision Theory and Applications, 361-365, 2013, Barcelona, Spain
Resumo:
The process of visually exploring underwater environments is still a complex problem. Underwater vision systems require complementary means of sensor information to help overcome water disturbances. This work proposes the development of calibration methods for a structured light based system consisting on a camera and a laser with a line beam. Two different calibration procedures that require only two images from different viewpoints were developed and tested in dry and underwater environments. Results obtained show, an accurate calibration for the camera/projector pair with errors close to 1 mm even in the presence of a small stereos baseline.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.
Resumo:
Several studies have shown that people with disabilities benefit substantially from access to a means of independent mobility and assistive technology. Researchers are using technology originally developed for mobile robots to create easier to use wheelchairs. With this kind of technology people with disabilities can gain a degree of independence in performing daily life activities. In this work a computer vision system is presented, able to drive a wheelchair with a minimum number of finger commands. The user hand is detected and segmented with the use of a kinect camera, and fingertips are extracted from depth information, and used as wheelchair commands.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
El trabajo expuesto en la presente memoria, forma parte de un proyecto de colaboración entre el Centro de Visión por Computador de la UAB y el Centro Joan Amades (ONCE), cuyo objetivo es la creación de recursos educativos que faciliten la integración de niños invidentes en las aulas. Se presenta el proceso de implementación de un intérprete y traductor de documentos escritos en Braille con contenido matemático y de texto, que permite a un profesor que no conozca el sistema Braille, la lectura de documentos creados por alumnos invidentes. Dicho intérprete forma parte de una herramienta que permite el reconocimiento de documentos escritos con una máquina Perkins.
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
The registration of full 3-D models is an important task in computer vision. Range finders only reconstruct a partial view of the object. Many authors have proposed several techniques to register 3D surfaces from multiple views in which there are basically two aspects to consider. First, poor registration in which some sort of correspondences are established. Second, accurate registration in order to obtain a better solution. A survey of the most common techniques is presented and includes experimental results of some of them
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
This paper focuses on the problem of realizing a plane-to-plane virtual link between a camera attached to the end-effector of a robot and a planar object. In order to do the system independent to the object surface appearance, a structured light emitter is linked to the camera so that 4 laser pointers are projected onto the object. In a previous paper we showed that such a system has good performance and nice characteristics like partial decoupling near the desired state and robustness against misalignment of the emitter and the camera (J. Pages et al., 2004). However, no analytical results concerning the global asymptotic stability of the system were obtained due to the high complexity of the visual features utilized. In this work we present a better set of visual features which improves the properties of the features in (J. Pages et al., 2004) and for which it is possible to prove the global asymptotic stability